{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00217598","sets":["581:10784:10787"]},"path":["10787"],"owner":"44499","recid":"217598","title":["一般化されたSine積分Si(a,x)とCosine積分Ci(a, x)の数値計算法"],"pubdate":{"attribute_name":"公開日","attribute_value":"2022-03-15"},"_buckets":{"deposit":"fff558d4-1786-4469-a782-a5b16fd93e19"},"_deposit":{"id":"217598","pid":{"type":"depid","value":"217598","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"一般化されたSine積分Si(a,x)とCosine積分Ci(a, x)の数値計算法","author_link":["564033","564030","564032","564031"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"一般化されたSine積分Si(a,x)とCosine積分Ci(a, x)の数値計算法"},{"subitem_title":"Computation of Generalized Sine Integral Si(a, x) and Cosine Integrals Ci(a, x)","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"[一般論文(テクニカルノート)] 一般化されたSine積分Si(a, x),一般化されたCosine積分Ci(a, x),不完全ガンマ関数 ","subitem_subject_scheme":"Other"}]},"item_type_id":"2","publish_date":"2022-03-15","item_2_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"中部大学"},{"subitem_text_value":"中部大学"}]},"item_2_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Chubu University","subitem_text_language":"en"},{"subitem_text_value":"Chubu University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/217598/files/IPSJ-JNL6303025.pdf","label":"IPSJ-JNL6303025.pdf"},"date":[{"dateType":"Available","dateValue":"2024-03-15"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-JNL6303025.pdf","filesize":[{"value":"411.2 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"8"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"a601aa78-33ab-46eb-a57b-3e5a970a1364","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2022 by the Information Processing Society of Japan"}]},"item_2_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"吉田, 年雄"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"足達, 義則"}],"nameIdentifiers":[{}]}]},"item_2_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Toshio, Yoshida","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Yoshinori, Adachi","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_2_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00116647","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_2_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7764","subitem_source_identifier_type":"ISSN"}]},"item_2_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"一般化されたSine積分${\\rm Si}(a, x)=\\int_{0}^{x}t^{a-1}\\sin tdt$とCosine積分${\\rm Ci}(a, x)=\\int_{0}^{x}t^{a-1}\\cos tdt$の新しい計算法を述べる.Si(a, x)は,奇数次の球ベッセル関数j2k+1(x)の級数で表され,Ci(a, x)は,偶数次の球ベッセル関数j2k(x)の級数で表される.本稿では,x ≥ 0の場合のSi(a, x)とCi(a, x)に対して,この級数を計算するために,漸化式を用いる方法(ミラーの方法)を自動化(要求精度で関数値を求める)したドイフルハートの方法を適用することを新規に提案する.","subitem_description_type":"Other"}]},"item_2_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"We describe a new numerical method for generalized Sine integral ${\\rm Si}(a, x)=\\int_{0}^{x}t^{a-1}\\sin tdt$ and Cosine integral ${\\rm Ci}(a, x)=\\int_{0}^{x}t^{a-1}\\cos tdt$. Si(a, x) is represented as the odd-order series of spherical Bessel functions. Ci(a, x) is represented as the even-order series of spherical Bessel functions. In this paper, we propose the application of Deuflhard's method where results are obtained with required accuracy for the computation of these series of spherical Bessel functions in case of x ≥ 0. It is revised version of the recurrence technique (Miller's method).","subitem_description_type":"Other"}]},"item_2_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"898","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌"}],"bibliographicPageStart":"895","bibliographicIssueDates":{"bibliographicIssueDate":"2022-03-15","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"3","bibliographicVolumeNumber":"63"}]},"relation_version_is_last":true,"item_2_identifier_registration":{"attribute_name":"ID登録","attribute_value_mlt":[{"subitem_identifier_reg_text":"10.20729/00217490","subitem_identifier_reg_type":"JaLC"}]},"weko_creator_id":"44499"},"id":217598,"updated":"2025-01-19T15:25:28.364294+00:00","links":{},"created":"2025-01-19T01:18:05.261788+00:00"}