@article{oai:ipsj.ixsq.nii.ac.jp:00217598,
 author = {吉田, 年雄 and 足達, 義則 and Toshio, Yoshida and Yoshinori, Adachi},
 issue = {3},
 journal = {情報処理学会論文誌},
 month = {Mar},
 note = {一般化されたSine積分${\rm Si}(a, x)=\int_{0}^{x}t^{a-1}\sin tdt$とCosine積分${\rm Ci}(a, x)=\int_{0}^{x}t^{a-1}\cos tdt$の新しい計算法を述べる.Si(a, x)は,奇数次の球ベッセル関数j2k+1(x)の級数で表され,Ci(a, x)は,偶数次の球ベッセル関数j2k(x)の級数で表される.本稿では,x ≥ 0の場合のSi(a, x)とCi(a, x)に対して,この級数を計算するために,漸化式を用いる方法(ミラーの方法)を自動化(要求精度で関数値を求める)したドイフルハートの方法を適用することを新規に提案する., We describe a new numerical method for generalized Sine integral ${\rm Si}(a, x)=\int_{0}^{x}t^{a-1}\sin tdt$ and Cosine integral ${\rm Ci}(a, x)=\int_{0}^{x}t^{a-1}\cos tdt$. Si(a, x) is represented as the odd-order series of spherical Bessel functions. Ci(a, x) is represented as the even-order series of spherical Bessel functions. In this paper, we propose the application of Deuflhard's method where results are obtained with required accuracy for the computation of these series of spherical Bessel functions in case of x ≥ 0. It is revised version of the recurrence technique (Miller's method).},
 pages = {895--898},
 title = {一般化されたSine積分Si(a,x)とCosine積分Ci(a, x)の数値計算法},
 volume = {63},
 year = {2022}
}