ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.63
  3. No.3

An IoT System with Business Card-Type Sensors for Collaborative Learning Analysis

https://ipsj.ixsq.nii.ac.jp/records/217591
https://ipsj.ixsq.nii.ac.jp/records/217591
cfbe4f21-9f0a-41c6-a378-2ef89b8e375d
名前 / ファイル ライセンス アクション
IPSJ-JNL6303018.pdf IPSJ-JNL6303018.pdf (1.9 MB)
Copyright (c) 2022 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2022-03-15
タイトル
タイトル An IoT System with Business Card-Type Sensors for Collaborative Learning Analysis
タイトル
言語 en
タイトル An IoT System with Business Card-Type Sensors for Collaborative Learning Analysis
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:若手研究者] collaborative learning, human activity recognition, sensor-based learning analysis, time synchronization
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属(英)
en
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属(英)
en
Graduate School of Integrated Science and Technology, Shizuoka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Shunpei, Yamaguchi

× Shunpei, Yamaguchi

Shunpei, Yamaguchi

Search repository
Shusuke, Ohtawa

× Shusuke, Ohtawa

Shusuke, Ohtawa

Search repository
Ritsuko, Oshima

× Ritsuko, Oshima

Ritsuko, Oshima

Search repository
Jun, Oshima

× Jun, Oshima

Jun, Oshima

Search repository
Takuya, Fujihashi

× Takuya, Fujihashi

Takuya, Fujihashi

Search repository
Shunsuke, Saruwatari

× Shunsuke, Saruwatari

Shunsuke, Saruwatari

Search repository
Takashi, Watanabe

× Takashi, Watanabe

Takashi, Watanabe

Search repository
著者名(英) Shunpei, Yamaguchi

× Shunpei, Yamaguchi

en Shunpei, Yamaguchi

Search repository
Shusuke, Ohtawa

× Shusuke, Ohtawa

en Shusuke, Ohtawa

Search repository
Ritsuko, Oshima

× Ritsuko, Oshima

en Ritsuko, Oshima

Search repository
Jun, Oshima

× Jun, Oshima

en Jun, Oshima

Search repository
Takuya, Fujihashi

× Takuya, Fujihashi

en Takuya, Fujihashi

Search repository
Shunsuke, Saruwatari

× Shunsuke, Saruwatari

en Shunsuke, Saruwatari

Search repository
Takashi, Watanabe

× Takashi, Watanabe

en Takashi, Watanabe

Search repository
論文抄録
内容記述タイプ Other
内容記述 Collaborative learning practices foster the ability to solve creative problems in collaboration with other learners. The collaboration enables learners to learn new ideas from other learners and enhances the social ability of the learners through interaction with other learners. Although the learning science field now uses qualitative analysis to analyze the effects of the collaborative discourse, qualitative analysis requires much human and time costs to analyze the collaborative discourse with dozens of students. This study proposes Sensor-based Regulation Profiler to reduce the analysis costs. The proposed scheme consists of the business card-type sensors that acquire sensor data from each learner with a precise time synchronization as well as learning analysis methods that analyze the collaborative discourse from the acquired sensor data. Experimental evaluations using the proposed scheme showed that the proposed business card-type sensors realized a time synchronization error of 7.7μs on average across the sensors. In addition, the proposed learning analysis could extract and visualize the collaborative activity of each learner in the collaborative discourse through the social graph extraction, learning phase extraction, speaker identification, and activity estimation by using the sensor data from the proposed business card-type sensors.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.238
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Collaborative learning practices foster the ability to solve creative problems in collaboration with other learners. The collaboration enables learners to learn new ideas from other learners and enhances the social ability of the learners through interaction with other learners. Although the learning science field now uses qualitative analysis to analyze the effects of the collaborative discourse, qualitative analysis requires much human and time costs to analyze the collaborative discourse with dozens of students. This study proposes Sensor-based Regulation Profiler to reduce the analysis costs. The proposed scheme consists of the business card-type sensors that acquire sensor data from each learner with a precise time synchronization as well as learning analysis methods that analyze the collaborative discourse from the acquired sensor data. Experimental evaluations using the proposed scheme showed that the proposed business card-type sensors realized a time synchronization error of 7.7μs on average across the sensors. In addition, the proposed learning analysis could extract and visualize the collaborative activity of each learner in the collaborative discourse through the social graph extraction, learning phase extraction, speaker identification, and activity estimation by using the sensor data from the proposed business card-type sensors.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.30(2022) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.30.238
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 63, 号 3, 発行日 2022-03-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:26:55.373071
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3