ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2022
  4. 2022-CVIM-229

Visual Constraints for Generating Multi-Domain Offline Handwritten Mathematical Expressions

https://ipsj.ixsq.nii.ac.jp/records/216947
https://ipsj.ixsq.nii.ac.jp/records/216947
f55aaa96-a9cb-49c9-bff8-d51420d3d74e
名前 / ファイル ライセンス アクション
IPSJ-CVIM22229016.pdf IPSJ-CVIM22229016.pdf (1.9 MB)
Copyright (c) 2022 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
CVIM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2022-03-03
タイトル
タイトル Visual Constraints for Generating Multi-Domain Offline Handwritten Mathematical Expressions
タイトル
言語 en
タイトル Visual Constraints for Generating Multi-Domain Offline Handwritten Mathematical Expressions
言語
言語 eng
キーワード
主題Scheme Other
主題 セッション3-A
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Computer and Information Science, Tokyo University of Agriculture and Technology
著者所属
Department of Computer and Information Science, Tokyo University of Agriculture and Technology
著者所属
Department of Computer and Information Science, Tokyo University of Agriculture and Technology
著者所属
The National Center for University Entrance Examinations
著者所属
Department of Computer and Information Science, Tokyo University of Agriculture and Technology
著者所属(英)
en
Department of Computer and Information Science, Tokyo University of Agriculture and Technology
著者所属(英)
en
Department of Computer and Information Science, Tokyo University of Agriculture and Technology
著者所属(英)
en
Department of Computer and Information Science, Tokyo University of Agriculture and Technology
著者所属(英)
en
The National Center for University Entrance Examinations
著者所属(英)
en
Department of Computer and Information Science, Tokyo University of Agriculture and Technology
著者名 Huy, Quang Ung

× Huy, Quang Ung

Huy, Quang Ung

Search repository
Hung, Tuan Nguyen

× Hung, Tuan Nguyen

Hung, Tuan Nguyen

Search repository
Cuong, Tuan Nguyen

× Cuong, Tuan Nguyen

Cuong, Tuan Nguyen

Search repository
Tsunenori, Ishioka

× Tsunenori, Ishioka

Tsunenori, Ishioka

Search repository
Masaki, Nakagawa

× Masaki, Nakagawa

Masaki, Nakagawa

Search repository
著者名(英) Huy, Quang Ung

× Huy, Quang Ung

en Huy, Quang Ung

Search repository
Hung, Tuan Nguyen

× Hung, Tuan Nguyen

en Hung, Tuan Nguyen

Search repository
Cuong, Tuan Nguyen

× Cuong, Tuan Nguyen

en Cuong, Tuan Nguyen

Search repository
Tsunenori, Ishioka

× Tsunenori, Ishioka

en Tsunenori, Ishioka

Search repository
Masaki, Nakagawa

× Masaki, Nakagawa

en Masaki, Nakagawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 Offline Handwritten Mathematical Expression (HME) recognition has been intensively studied for two decades. However, most studies have worked on rendered images of online HMEs (Rendered Domain, or RD in short), but not on optically scanned HME images (Optical Domain, or OD in short). Due to a large gap between these two domains, it is challenging to use an HME recognizer trained in RD to recognize patterns in OD. To utilize a recognizer of RD in recognizing OD patterns, we propose a visual constrained CycleGAN (CCycleGAN) model to generate synthetic OD patterns from RD patterns and vice versa. For the RD-to-OD direction, we train a new recognizer of OD using the synthetic patterns. For the OD-to-RD direction, we utilize a pre-trained HME recognizer of RD to recognize the synthetic RD patterns generated from the OD patterns. Our experiments show that the CCycleGAN model performs significantly better than the CycleGAN model in terms of recognition accuracy. The recognition results demonstrate the effectiveness of our method in recognizing OD patterns using labeled RD patterns and unlabeled OD patterns for training. In addition, our CCycleGAN can well perform even when using only 100 training patterns in OD.
論文抄録(英)
内容記述タイプ Other
内容記述 Offline Handwritten Mathematical Expression (HME) recognition has been intensively studied for two decades. However, most studies have worked on rendered images of online HMEs (Rendered Domain, or RD in short), but not on optically scanned HME images (Optical Domain, or OD in short). Due to a large gap between these two domains, it is challenging to use an HME recognizer trained in RD to recognize patterns in OD. To utilize a recognizer of RD in recognizing OD patterns, we propose a visual constrained CycleGAN (CCycleGAN) model to generate synthetic OD patterns from RD patterns and vice versa. For the RD-to-OD direction, we train a new recognizer of OD using the synthetic patterns. For the OD-to-RD direction, we utilize a pre-trained HME recognizer of RD to recognize the synthetic RD patterns generated from the OD patterns. Our experiments show that the CCycleGAN model performs significantly better than the CycleGAN model in terms of recognition accuracy. The recognition results demonstrate the effectiveness of our method in recognizing OD patterns using labeled RD patterns and unlabeled OD patterns for training. In addition, our CCycleGAN can well perform even when using only 100 training patterns in OD.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2022-CVIM-229, 号 16, p. 1-6, 発行日 2022-03-03
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:40:40.607570
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3