@techreport{oai:ipsj.ixsq.nii.ac.jp:00216744,
 author = {丹野, 友華 and 前川, 卓也 and 原, 隆浩 and 尾原, 和也 and 岸野, 泰恵 and 村上, 友規 and アベセカラ, ヒランタ},
 issue = {28},
 month = {Feb},
 note = {近年,Wi-Fi 電波のチャネル状態情報 (Channel State Information: CSI) を用いる行動認識手法が注目されている.CSI を用いた従来の行動認識手法は,一定の高いサンプリングレートで取得された CSI を利用しているため,取得や解析に高い計算コストを必要とした.この問題を解決するために,現在の行動や状態に応じて適切にサンプリングレートを調整しながら,できるだけ低いサンプリングレートで行動認識を行う手法が研究されている.しかし,この既存手法では,CSI が取得される環境ごとに行動認識モデルとサンプリングレートの選択を行うモジュールの学習を行う必要がある.特に,サンプリングレート選択モジュールの学習手法には強化学習が用いられているため,多くの時間と計算コストが必要となる.そこで本稿では,環境に依存せずに動作するサンプリングレート選択モジュールを実現することで,対象の環境における CSI を用いた行動認識システムの導入コストを低減する.サンプリングレートの選択には,現在行われている行動の潜在表現である,行動認識モデルの特徴抽出器の出力を利用することが有効であるが,行動認識モデルはデータの特徴が異なる環境ごとに用意する必要があるため,環境非依存なサンプリングレート選択には用いられない.そこで本研究では,行動認識モデルに Domain Adversarial Neural Networks (DANN) を用いることで,環境非依存な特徴抽出を行った.また環境によって,異なるサンプリングレートで認識を行ったときの認識性能が異なるため,特定の行動をどのサンプリングレートでするかを事前に学習することは不可能である.そこで,環境に依存しない情報と考えられる行動認識モデルの現在の行動認識結果の信頼度を,サンプリングレート選択モジュールの入力に追加で用いる.これにより,例えば信頼度が低い場合は高いサンプリングレートに切り替えるなどの環境非依存な方策を学習できると期待される.3 つの環境で,それぞれ 7 種類の行動を行った際の CSI を取得し,評価実験を行った.},
 title = {Wi-Fi CSIを用いた行動認識のための強化学習を用いた環境非依存なサンプリングレート選択},
 year = {2022}
}