@techreport{oai:ipsj.ixsq.nii.ac.jp:00216739,
 author = {村上, 健太 and Kumrai, Teerawat and 前川, 卓也 and 原, 隆浩 and 尾原, 和也 and 岸野, 泰恵 and 村上, 友規 and アベセカラ, ヒランタ},
 issue = {23},
 month = {Feb},
 note = {近年,歩行中に観測された Wi-Fi 受信信号の時系列情報を用いた携帯端末の位置推定に関する研究が盛んに行われており,駅や空港などの屋内施設でのナビゲーションなどへの応用が期待されている.また,Wi-Fi 信号情報の中でも,チャネル状態情報(CSI: Channel State Information)は豊富な情報量をもち,高精度な位置推定が可能であると言われている.Wi-Fi 受信信号の時系列情報を用いた歩行軌跡推定では,位置推定対象となるユーザが歩行する可能性のある全ての経路についてあらかじめ学習用の Wi-Fi 時系列データを収集する必要があり,広大な屋内施設では莫大な経路数が存在するため,全ての経路に対して学習データの収集を行うことは困難である.本研究では,少量の歩行パターンの CSI 時系列を学習データとして,未学習の歩行パターンに対しても位置推定可能な屋内位置推定モデルの作成を目指す.具体的には,近傍地点の Wi-Fi 信号の潜在表現は局所的に滑らかであるという仮定に基づき,Variational AutoEncoder(VAE)を用いて潜在空間のデータ分布に制約を持たせることで,学習していない座標で観測された CSI データの潜在表現を周辺座標のデータから補完的に獲得する.評価実験では,実環境での実験で未学習地点を含む歩行経路で得られた CSI 時系列を用いて提案手法の有効性を確認した.},
 title = {Wi-Fi CSIの時系列情報を用いた少量学習データによる屋内位置推定手法},
 year = {2022}
}