ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. システム・アーキテクチャ(ARC)
  3. 2022
  4. 2022-ARC-247

三元ディープスパイクニューラルネットワーク

https://ipsj.ixsq.nii.ac.jp/records/216101
https://ipsj.ixsq.nii.ac.jp/records/216101
b526716f-593c-459b-8166-efe7e53459b8
名前 / ファイル ライセンス アクション
IPSJ-ARC22247014.pdf IPSJ-ARC22247014.pdf (1.8 MB)
Copyright (c) 2022 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
ARC:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2022-01-17
タイトル
タイトル 三元ディープスパイクニューラルネットワーク
タイトル
言語 en
タイトル Ternarizing Deep Spiking Neural Network
言語
言語 eng
キーワード
主題Scheme Other
主題 ニューラルネットワーク
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
奈良先端科学技術大学院大学
著者所属
奈良先端科学技術大学院大学
著者所属
奈良先端科学技術大学院大学
著者所属
奈良先端科学技術大学院大学
著者所属
奈良先端科学技術大学院大学
著者所属(英)
en
Nara Institute of Science and Technology
著者所属(英)
en
Nara Institute of Science and Technology
著者所属(英)
en
Nara Institute of Science and Technology
著者所属(英)
en
Nara Institute of Science and Technology
著者所属(英)
en
Nara Institute of Science and Technology
著者名 Man, Wu

× Man, Wu

Man, Wu

Search repository
Yirong, Kan

× Yirong, Kan

Yirong, Kan

Search repository
Vantinh, Nguyen

× Vantinh, Nguyen

Vantinh, Nguyen

Search repository
張, 任遠

× 張, 任遠

張, 任遠

Search repository
中島, 康彦

× 中島, 康彦

中島, 康彦

Search repository
著者名(英) Man, Wu

× Man, Wu

en Man, Wu

Search repository
Yirong, Kan

× Yirong, Kan

en Yirong, Kan

Search repository
Vantinh, Nguyen

× Vantinh, Nguyen

en Vantinh, Nguyen

Search repository
Renyuan, Zhang

× Renyuan, Zhang

en Renyuan, Zhang

Search repository
Yasuhiko, Nakashima

× Yasuhiko, Nakashima

en Yasuhiko, Nakashima

Search repository
論文抄録
内容記述タイプ Other
内容記述 The feasibility of ternarizing spiking neural networks (SNNs) is studied in this work toward trading a slight accuracy for significantly reducing computational and memory costs. By leveraging a parametric integrate-and-fire (PIF) neuron with learnable threshold and spike-timing-dependent backpropagation (STDB) learning rule, the ternarized spiking neural networks (TSNNs) enable directly trained with low latency and negligible loss of accuracy. To this end, a paradigm for binary-ternary dot-product operation is realized during the inference; therefore, the TSNNs achieve up to 16x model compression in contrast to the full precision SNNs. Moreover, to mitigate the accuracy gap, an optimized TSNN with a spiking ResNet structure is introduced into TSNN. For proof-of-concept, we evaluate the prototype of proposed TSNN on N-MNIST, CIFAR-10, CIFAR-100, which achieve 98.43%, 89.07%, 65.24% accuracy with 4 timesteps, respectively. On the basis of this prototype, the optimized TSNN improves by 0.84% and 0.51% over CIFAR-10 and CIFAR-100 datasets, respectively.
論文抄録(英)
内容記述タイプ Other
内容記述 The feasibility of ternarizing spiking neural networks (SNNs) is studied in this work toward trading a slight accuracy for significantly reducing computational and memory costs. By leveraging a parametric integrate-and-fire (PIF) neuron with learnable threshold and spike-timing-dependent backpropagation (STDB) learning rule, the ternarized spiking neural networks (TSNNs) enable directly trained with low latency and negligible loss of accuracy. To this end, a paradigm for binary-ternary dot-product operation is realized during the inference; therefore, the TSNNs achieve up to 16x model compression in contrast to the full precision SNNs. Moreover, to mitigate the accuracy gap, an optimized TSNN with a spiking ResNet structure is introduced into TSNN. For proof-of-concept, we evaluate the prototype of proposed TSNN on N-MNIST, CIFAR-10, CIFAR-100, which achieve 98.43%, 89.07%, 65.24% accuracy with 4 timesteps, respectively. On the basis of this prototype, the optimized TSNN improves by 0.84% and 0.51% over CIFAR-10 and CIFAR-100 datasets, respectively.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10096105
書誌情報 研究報告システム・アーキテクチャ(ARC)

巻 2022-ARC-247, 号 14, p. 1-6, 発行日 2022-01-17
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8574
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 15:56:00.156684
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3