Item type |
SIG Technical Reports(1) |
公開日 |
2022-01-17 |
タイトル |
|
|
タイトル |
三元ディープスパイクニューラルネットワーク |
タイトル |
|
|
言語 |
en |
|
タイトル |
Ternarizing Deep Spiking Neural Network |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
ニューラルネットワーク |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
奈良先端科学技術大学院大学 |
著者所属 |
|
|
|
奈良先端科学技術大学院大学 |
著者所属 |
|
|
|
奈良先端科学技術大学院大学 |
著者所属 |
|
|
|
奈良先端科学技術大学院大学 |
著者所属 |
|
|
|
奈良先端科学技術大学院大学 |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者所属(英) |
|
|
|
en |
|
|
Nara Institute of Science and Technology |
著者名 |
Man, Wu
Yirong, Kan
Vantinh, Nguyen
張, 任遠
中島, 康彦
|
著者名(英) |
Man, Wu
Yirong, Kan
Vantinh, Nguyen
Renyuan, Zhang
Yasuhiko, Nakashima
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
The feasibility of ternarizing spiking neural networks (SNNs) is studied in this work toward trading a slight accuracy for significantly reducing computational and memory costs. By leveraging a parametric integrate-and-fire (PIF) neuron with learnable threshold and spike-timing-dependent backpropagation (STDB) learning rule, the ternarized spiking neural networks (TSNNs) enable directly trained with low latency and negligible loss of accuracy. To this end, a paradigm for binary-ternary dot-product operation is realized during the inference; therefore, the TSNNs achieve up to 16x model compression in contrast to the full precision SNNs. Moreover, to mitigate the accuracy gap, an optimized TSNN with a spiking ResNet structure is introduced into TSNN. For proof-of-concept, we evaluate the prototype of proposed TSNN on N-MNIST, CIFAR-10, CIFAR-100, which achieve 98.43%, 89.07%, 65.24% accuracy with 4 timesteps, respectively. On the basis of this prototype, the optimized TSNN improves by 0.84% and 0.51% over CIFAR-10 and CIFAR-100 datasets, respectively. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
The feasibility of ternarizing spiking neural networks (SNNs) is studied in this work toward trading a slight accuracy for significantly reducing computational and memory costs. By leveraging a parametric integrate-and-fire (PIF) neuron with learnable threshold and spike-timing-dependent backpropagation (STDB) learning rule, the ternarized spiking neural networks (TSNNs) enable directly trained with low latency and negligible loss of accuracy. To this end, a paradigm for binary-ternary dot-product operation is realized during the inference; therefore, the TSNNs achieve up to 16x model compression in contrast to the full precision SNNs. Moreover, to mitigate the accuracy gap, an optimized TSNN with a spiking ResNet structure is introduced into TSNN. For proof-of-concept, we evaluate the prototype of proposed TSNN on N-MNIST, CIFAR-10, CIFAR-100, which achieve 98.43%, 89.07%, 65.24% accuracy with 4 timesteps, respectively. On the basis of this prototype, the optimized TSNN improves by 0.84% and 0.51% over CIFAR-10 and CIFAR-100 datasets, respectively. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10096105 |
書誌情報 |
研究報告システム・アーキテクチャ(ARC)
巻 2022-ARC-247,
号 14,
p. 1-6,
発行日 2022-01-17
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8574 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |