@techreport{oai:ipsj.ixsq.nii.ac.jp:00216098, author = {市川, 雄樹 and 神宮司, 明良 and 倉持, 亮佑 and 中原, 啓貴 and Yuki, Ichikawa and Akira, Jinguji and Ryosuke, Kuramochi and Hiroki, Nakahara}, issue = {11}, month = {Jan}, note = {Deep Neural Network (DNN) はパラメータ数や計算量が多く,計算資源の限られるエッジデバイスでの活用は難しい.したがって蒸留や枝刈りといった DNN の軽量化手法が提案されている.提案手法はこれらを用いて既存の訓練済みモデルを効率的に軽量化する.この手法により,短時間でモデルをエッジデバイス向けに軽量化できることを示す.また Jetson Nano と DPU を用いて,認識精度と推論速度のトレードオフを明らかにする., A deep neural network (DNN) is computationally expensive, making it challenging to run DNN on edge devices. Therefore, model compression techniques such as knowledge distillation and pruning are proposed. This research suggests an efficient method to compress pretrained models using these techniques. We show that our method can compress models for edge devices in a short time. We also show a trade–off between recognition accuracy and inference time on Jetson Nano GPU and DPU on a Xilinx FPGA.}, title = {蒸留とレイヤー枝刈りによるエッジデバイス推論処理の高速化について}, year = {2022} }