{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00214687","sets":["6504:10735:10805"]},"path":["10805"],"owner":"44499","recid":"214687","title":["A Study on the Leapfrogging Strategy for the Quantum Approximate Optimization Algorithm on n-regular Graph Instances"],"pubdate":{"attribute_name":"公開日","attribute_value":"2021-03-04"},"_buckets":{"deposit":"68eaa8e8-f913-4d99-bf8b-dcbc403ffd25"},"_deposit":{"id":"214687","pid":{"type":"depid","value":"214687","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"A Study on the Leapfrogging Strategy for the Quantum Approximate Optimization Algorithm on n-regular Graph Instances","author_link":["551922"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"A Study on the Leapfrogging Strategy for the Quantum Approximate Optimization Algorithm on n-regular Graph Instances"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"ソフトウェア科学・工学","subitem_subject_scheme":"Other"}]},"item_type_id":"22","publish_date":"2021-03-04","item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_22_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"筑波大"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/214687/files/IPSJ-Z83-6B-04.pdf","label":"IPSJ-Z83-6B-04.pdf"},"date":[{"dateType":"Available","dateValue":"2021-12-28"}],"format":"application/pdf","filename":"IPSJ-Z83-6B-04.pdf","filesize":[{"value":"278.4 kB"}],"mimetype":"application/pdf","accessrole":"open_date","version_id":"7faab958-14de-450b-8476-47f652cd308e","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2021 by the Information Processing Society of Japan"}]},"item_22_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Xinwei, Lee"}],"nameIdentifiers":[{}]}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_5794","resourcetype":"conference paper"}]},"item_22_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00349328","subitem_source_identifier_type":"NCID"}]},"item_22_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"The quantum approximate optimization algorithm (QAOA) has numerous promising applications on solving the combinatorial optimization problems on the near-term Noisy Intermediate Scalable Quantum (NISQ) devices. QAOA has a quantum-classical hybrid structure, with the quantum part consisting the parameterized alternating operator ansatz, and the classical part consist of an optimization algorithm optimizing the parameters to maximize the expectation value. This value depends highly on the parameters. This implies that a set of good parameters leads to an accurate solution of the given problem. However, at large circuit depth, it is difficult to achieve global optimization due to the multiple occurrence of local minima. Therefore, we study the so-called leapfrogging strategy on solving the Max-cut problem for 3-regular graphs, which reuses the optimized parameters in larger graphs.","subitem_description_type":"Other"}]},"item_22_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"156","bibliographic_titles":[{"bibliographic_title":"第83回全国大会講演論文集"}],"bibliographicPageStart":"155","bibliographicIssueDates":{"bibliographicIssueDate":"2021-03-04","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicVolumeNumber":"2021"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":214687,"updated":"2025-01-19T16:30:55.114964+00:00","links":{},"created":"2025-01-19T01:15:29.441664+00:00"}