ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.62
  3. No.12

Privacy Risk of Document Data and a Countermeasure Framework

https://ipsj.ixsq.nii.ac.jp/records/214348
https://ipsj.ixsq.nii.ac.jp/records/214348
6c522d4c-1376-46db-9de1-f8d92e7dfb57
名前 / ファイル ライセンス アクション
IPSJ-JNL6212015.pdf IPSJ-JNL6212015.pdf (641.7 kB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2021-12-15
タイトル
タイトル Privacy Risk of Document Data and a Countermeasure Framework
タイトル
言語 en
タイトル Privacy Risk of Document Data and a Countermeasure Framework
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:デジタル社会の情報セキュリティとトラスト] privacy, document data, sanitization
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Advanced Telecommunications Research Institute International
著者所属
Advanced Telecommunications Research Institute International
著者所属
KDDI Research
著者所属
National Institute of Advanced Industrial Science and Technology
著者所属
Osaka University/Japan Advanced Institute of Science and Technology
著者所属(英)
en
Advanced Telecommunications Research Institute International
著者所属(英)
en
Advanced Telecommunications Research Institute International
著者所属(英)
en
KDDI Research
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology
著者所属(英)
en
Osaka University / Japan Advanced Institute of Science and Technology
著者名 Tomoaki, Mimoto

× Tomoaki, Mimoto

Tomoaki, Mimoto

Search repository
Masayuki, Hashimoto

× Masayuki, Hashimoto

Masayuki, Hashimoto

Search repository
Shinsaku, Kiyomoto

× Shinsaku, Kiyomoto

Shinsaku, Kiyomoto

Search repository
Koji, Kitamura

× Koji, Kitamura

Koji, Kitamura

Search repository
Atsuko, Miyaji

× Atsuko, Miyaji

Atsuko, Miyaji

Search repository
著者名(英) Tomoaki, Mimoto

× Tomoaki, Mimoto

en Tomoaki, Mimoto

Search repository
Masayuki, Hashimoto

× Masayuki, Hashimoto

en Masayuki, Hashimoto

Search repository
Shinsaku, Kiyomoto

× Shinsaku, Kiyomoto

en Shinsaku, Kiyomoto

Search repository
Koji, Kitamura

× Koji, Kitamura

en Koji, Kitamura

Search repository
Atsuko, Miyaji

× Atsuko, Miyaji

en Atsuko, Miyaji

Search repository
論文抄録
内容記述タイプ Other
内容記述 A huge number of documents such as news articles, public reports, and personal essays have been released on websites and social media. Once documents containing privacy-sensitive information are published, the risk of privacy breaches increases, thus requiring very careful review of documents prior to publication. In many cases, human experts redact or sanitize documents before publishing them; however, this approach can be inefficient with regard to cost and accuracy. Furthermore, such measures do not guarantee that critical privacy risks are eliminated from the documents. In this paper, we present a generalized adversary model and apply it to document data. This work devises an attack algorithm for documents using a web search engine, and then proposes a privacy-preserving framework against the attacks. We evaluate the privacy risks for actual accident reports from schools and court documents. In experiments using these reports, we show that human-sanitized documents still contain privacy risks and that our proposed approach can contribute to risk reduction.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.778
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 A huge number of documents such as news articles, public reports, and personal essays have been released on websites and social media. Once documents containing privacy-sensitive information are published, the risk of privacy breaches increases, thus requiring very careful review of documents prior to publication. In many cases, human experts redact or sanitize documents before publishing them; however, this approach can be inefficient with regard to cost and accuracy. Furthermore, such measures do not guarantee that critical privacy risks are eliminated from the documents. In this paper, we present a generalized adversary model and apply it to document data. This work devises an attack algorithm for documents using a web search engine, and then proposes a privacy-preserving framework against the attacks. We evaluate the privacy risks for actual accident reports from schools and court documents. In experiments using these reports, we show that human-sanitized documents still contain privacy risks and that our proposed approach can contribute to risk reduction.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.778
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 62, 号 12, 発行日 2021-12-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 16:39:35.850872
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3