ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. ゲームプログラミングワークショップ(GPWS)
  4. 2021

Procedural Content Generation for Tower Defense Games:a Preliminary Experiment with Reinforcement Learning

https://ipsj.ixsq.nii.ac.jp/records/213438
https://ipsj.ixsq.nii.ac.jp/records/213438
c6926ed1-b5fe-4d7b-a830-40f8d87760d0
名前 / ファイル ライセンス アクション
IPSJ-GPWS2021017.pdf IPSJ-GPWS2021017.pdf (1.4 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2021-11-06
タイトル
タイトル Procedural Content Generation for Tower Defense Games:a Preliminary Experiment with Reinforcement Learning
タイトル
言語 en
タイトル Procedural Content Generation for Tower Defense Games:a Preliminary Experiment with Reinforcement Learning
言語
言語 eng
キーワード
主題Scheme Other
主題 Procedural Content Generation
キーワード
主題Scheme Other
主題 Reinforcement Learning
キーワード
主題Scheme Other
主題 Tower Defense
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Graduate School of Arts and Sciences, The University of Tokyo
著者所属
Information Technology Center, The University of Tokyo
著者所属(英)
en
Graduate School of Arts and Sciences, The University of Tokyo
著者所属(英)
en
Information Technology Center, The University of Tokyo
著者名 Yueming, Xu

× Yueming, Xu

Yueming, Xu

Search repository
Tetsuro, Tanaka

× Tetsuro, Tanaka

Tetsuro, Tanaka

Search repository
著者名(英) Yueming, Xu

× Yueming, Xu

en Yueming, Xu

Search repository
Tetsuro, Tanaka

× Tetsuro, Tanaka

en Tetsuro, Tanaka

Search repository
論文抄録
内容記述タイプ Other
内容記述 Although procedural Content Generation via Machine Learning (PCGML) has recently enjoyed consider-able popularity, there is little research on PCGML applied to more complicated games such as Tower Defense (TD). We trained agents to play TD levels (the solver) and generate TD levels (the generator) using reinforcement learning on a TD simulator developed in-house. We conducted the experiments of solver agents with different action spaces to find the most proper one for our task. Then we tried to generate levels, but the results showed that there is still a lot of room for improvement.
論文抄録(英)
内容記述タイプ Other
内容記述 Although procedural Content Generation via Machine Learning (PCGML) has recently enjoyed consider-able popularity, there is little research on PCGML applied to more complicated games such as Tower Defense (TD). We trained agents to play TD levels (the solver) and generate TD levels (the generator) using reinforcement learning on a TD simulator developed in-house. We conducted the experiments of solver agents with different action spaces to find the most proper one for our task. Then we tried to generate levels, but the results showed that there is still a lot of room for improvement.
書誌情報 ゲームプログラミングワークショップ2021論文集

巻 2021, p. 93-97, 発行日 2021-11-06
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:09:42.155452
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3