ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.62
  3. No.10

Joint Position Estimation for Body Pressure Images during Sleep: An Extension for CPM Using Body Area and Posture Estimation Mashups

https://ipsj.ixsq.nii.ac.jp/records/213302
https://ipsj.ixsq.nii.ac.jp/records/213302
e0b7c9dd-1863-4bcc-8f3b-0fc30a9263dd
名前 / ファイル ライセンス アクション
IPSJ-JNL6210007.pdf IPSJ-JNL6210007.pdf (2.5 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2021-10-15
タイトル
タイトル Joint Position Estimation for Body Pressure Images during Sleep: An Extension for CPM Using Body Area and Posture Estimation Mashups
タイトル
言語 en
タイトル Joint Position Estimation for Body Pressure Images during Sleep: An Extension for CPM Using Body Area and Posture Estimation Mashups
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:ユビキタスコンピューティングシステム(X)] sleeping posture, body pressure image, joint position estimation, body area estimation, posture classification
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Informatics, Nagoya University
著者所属
Graduate School of Informatics, Nagoya University
著者所属
Institute of Innovation for Future Society, Nagoya University
著者所属
Graduate School of Informatics, Nagoya University
著者所属(英)
en
Graduate School of Informatics, Nagoya University
著者所属(英)
en
Graduate School of Informatics, Nagoya University
著者所属(英)
en
Institute of Innovation for Future Society, Nagoya University
著者所属(英)
en
Graduate School of Informatics, Nagoya University
著者名 Kei, Iwase

× Kei, Iwase

Kei, Iwase

Search repository
Yu, Enokibori

× Yu, Enokibori

Yu, Enokibori

Search repository
Naoto, Yoshida

× Naoto, Yoshida

Naoto, Yoshida

Search repository
Kenji, Mase

× Kenji, Mase

Kenji, Mase

Search repository
著者名(英) Kei, Iwase

× Kei, Iwase

en Kei, Iwase

Search repository
Yu, Enokibori

× Yu, Enokibori

en Yu, Enokibori

Search repository
Naoto, Yoshida

× Naoto, Yoshida

en Naoto, Yoshida

Search repository
Kenji, Mase

× Kenji, Mase

en Kenji, Mase

Search repository
論文抄録
内容記述タイプ Other
内容記述 Estimating sleeping postures with body joint positions is critical for identifying potential sleeping problems and the risk of pressure ulcers. Many methods have estimated postures with body joint positions from camera images for general purposes. However, visual monitoring of sleeping contexts suffers from privacy and occlusion issues due to blankets, pillows, etc. An approach to solve those issues is the use of body pressure images obtained from bed surfaces. We have developed a textile-based sheet-type pressure sensor to avoid such issues. Unfortunately, its use raises other issues that are absent from camera images such as low resolution and noise caused by the wrinkling of sensor sheets. In this paper, we extend DNN-based joint estimation, called Convolutional Pose Machine (CPM), using body area and posture estimation mashups to improve the accuracy of joint estimation. The following are our evaluation results with cross-validation with 16 joints in six sleeping postures of 12 subjects: 7.15cm accuracy in mean absolute error (MAE), which is a 33.7% improvement from the standard CPM, and 8.52cm accuracy in MAE, which is a 37.4% improvement from CPM with camera images in situations using a pillow and a blanket.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.620
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Estimating sleeping postures with body joint positions is critical for identifying potential sleeping problems and the risk of pressure ulcers. Many methods have estimated postures with body joint positions from camera images for general purposes. However, visual monitoring of sleeping contexts suffers from privacy and occlusion issues due to blankets, pillows, etc. An approach to solve those issues is the use of body pressure images obtained from bed surfaces. We have developed a textile-based sheet-type pressure sensor to avoid such issues. Unfortunately, its use raises other issues that are absent from camera images such as low resolution and noise caused by the wrinkling of sensor sheets. In this paper, we extend DNN-based joint estimation, called Convolutional Pose Machine (CPM), using body area and posture estimation mashups to improve the accuracy of joint estimation. The following are our evaluation results with cross-validation with 16 joints in six sleeping postures of 12 subjects: 7.15cm accuracy in mean absolute error (MAE), which is a 33.7% improvement from the standard CPM, and 8.52cm accuracy in MAE, which is a 37.4% improvement from CPM with camera images in situations using a pillow and a blanket.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.620
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 62, 号 10, 発行日 2021-10-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:12:25.331558
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3