WEKO3
アイテム
Predicting Next-use Mobile Apps Using App Semantic Representations
https://ipsj.ixsq.nii.ac.jp/records/213299
https://ipsj.ixsq.nii.ac.jp/records/213299b209afdc-d2e2-4c09-8686-59304181552f
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2021 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-10-15 | |||||||||||||
タイトル | ||||||||||||||
タイトル | Predicting Next-use Mobile Apps Using App Semantic Representations | |||||||||||||
タイトル | ||||||||||||||
言語 | en | |||||||||||||
タイトル | Predicting Next-use Mobile Apps Using App Semantic Representations | |||||||||||||
言語 | ||||||||||||||
言語 | eng | |||||||||||||
キーワード | ||||||||||||||
主題Scheme | Other | |||||||||||||
主題 | [特集:ユビキタスコンピューティングシステム(X)] smartphone, mobile apps, next-use app prediction, pattern recognition | |||||||||||||
資源タイプ | ||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||
資源タイプ | journal article | |||||||||||||
著者所属 | ||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||
著者所属 | ||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||
著者所属 | ||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||
著者所属 | ||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||
著者所属(英) | ||||||||||||||
en | ||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||
著者名 |
Cheng, Chen
× Cheng, Chen
× Takuya, Maekawa
× Daichi, Amagata
× Takahiro, Hara
|
|||||||||||||
著者名(英) |
Cheng, Chen
× Cheng, Chen
× Takuya, Maekawa
× Daichi, Amagata
× Takahiro, Hara
|
|||||||||||||
論文抄録 | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | Using the app usage history of a target user as a basis, this study proposes a novel method for predicting next-use mobile apps of the user that can assist the user in selecting an app from a list of installed apps. The proposed method is designed to train a next-use app prediction model using semantic representations of the usage histories of other users (source users) to deal with the user and app cold-start problems of an app prediction system in which training data from a target user beginning to use the system and training data related to newly installed or released apps are considered to be insufficient. We predict the usage of apps by a target user by leveraging the semantic similarities between the apps that are installed on the smartphones of the source users and the apps that are installed on the smartphone of a target user, permitting us to predict next-use apps regardless of the apps installed in the target user's smartphone. We evaluate our method using the actual app usage data collected from 100 participants over a period of approximately 70 days with 300,000 app usage histories. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) DOI http://dx.doi.org/10.2197/ipsjjip.29.597 ------------------------------ |
|||||||||||||
論文抄録(英) | ||||||||||||||
内容記述タイプ | Other | |||||||||||||
内容記述 | Using the app usage history of a target user as a basis, this study proposes a novel method for predicting next-use mobile apps of the user that can assist the user in selecting an app from a list of installed apps. The proposed method is designed to train a next-use app prediction model using semantic representations of the usage histories of other users (source users) to deal with the user and app cold-start problems of an app prediction system in which training data from a target user beginning to use the system and training data related to newly installed or released apps are considered to be insufficient. We predict the usage of apps by a target user by leveraging the semantic similarities between the apps that are installed on the smartphones of the source users and the apps that are installed on the smartphone of a target user, permitting us to predict next-use apps regardless of the apps installed in the target user's smartphone. We evaluate our method using the actual app usage data collected from 100 participants over a period of approximately 70 days with 300,000 app usage histories. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) DOI http://dx.doi.org/10.2197/ipsjjip.29.597 ------------------------------ |
|||||||||||||
書誌レコードID | ||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||
収録物識別子 | AN00116647 | |||||||||||||
書誌情報 |
情報処理学会論文誌 巻 62, 号 10, 発行日 2021-10-15 |
|||||||||||||
ISSN | ||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||
収録物識別子 | 1882-7764 |