ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.62
  3. No.10

Predicting Next-use Mobile Apps Using App Semantic Representations

https://ipsj.ixsq.nii.ac.jp/records/213299
https://ipsj.ixsq.nii.ac.jp/records/213299
b209afdc-d2e2-4c09-8686-59304181552f
名前 / ファイル ライセンス アクション
IPSJ-JNL6210004.pdf IPSJ-JNL6210004.pdf (1.4 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2021-10-15
タイトル
タイトル Predicting Next-use Mobile Apps Using App Semantic Representations
タイトル
言語 en
タイトル Predicting Next-use Mobile Apps Using App Semantic Representations
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:ユビキタスコンピューティングシステム(X)] smartphone, mobile apps, next-use app prediction, pattern recognition
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Cheng, Chen

× Cheng, Chen

Cheng, Chen

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
Daichi, Amagata

× Daichi, Amagata

Daichi, Amagata

Search repository
Takahiro, Hara

× Takahiro, Hara

Takahiro, Hara

Search repository
著者名(英) Cheng, Chen

× Cheng, Chen

en Cheng, Chen

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
Daichi, Amagata

× Daichi, Amagata

en Daichi, Amagata

Search repository
Takahiro, Hara

× Takahiro, Hara

en Takahiro, Hara

Search repository
論文抄録
内容記述タイプ Other
内容記述 Using the app usage history of a target user as a basis, this study proposes a novel method for predicting next-use mobile apps of the user that can assist the user in selecting an app from a list of installed apps. The proposed method is designed to train a next-use app prediction model using semantic representations of the usage histories of other users (source users) to deal with the user and app cold-start problems of an app prediction system in which training data from a target user beginning to use the system and training data related to newly installed or released apps are considered to be insufficient. We predict the usage of apps by a target user by leveraging the semantic similarities between the apps that are installed on the smartphones of the source users and the apps that are installed on the smartphone of a target user, permitting us to predict next-use apps regardless of the apps installed in the target user's smartphone. We evaluate our method using the actual app usage data collected from 100 participants over a period of approximately 70 days with 300,000 app usage histories.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.597
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Using the app usage history of a target user as a basis, this study proposes a novel method for predicting next-use mobile apps of the user that can assist the user in selecting an app from a list of installed apps. The proposed method is designed to train a next-use app prediction model using semantic representations of the usage histories of other users (source users) to deal with the user and app cold-start problems of an app prediction system in which training data from a target user beginning to use the system and training data related to newly installed or released apps are considered to be insufficient. We predict the usage of apps by a target user by leveraging the semantic similarities between the apps that are installed on the smartphones of the source users and the apps that are installed on the smartphone of a target user, permitting us to predict next-use apps regardless of the apps installed in the target user's smartphone. We evaluate our method using the actual app usage data collected from 100 participants over a period of approximately 70 days with 300,000 app usage histories.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.597
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 62, 号 10, 発行日 2021-10-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:12:27.565049
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3