ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. データベースシステム(DBS)※2025年度よりデータベースとデータサイエンス(DBS)研究会に名称変更
  3. 2021
  4. 2021-DBS-173

Ensemble BERT-BiLSTM-CNN Model for Sequence Classification

https://ipsj.ixsq.nii.ac.jp/records/212729
https://ipsj.ixsq.nii.ac.jp/records/212729
ef4a14fc-b505-45aa-93b9-e7abf8cd1c1a
名前 / ファイル ライセンス アクション
IPSJ-DBS21173003.pdf IPSJ-DBS21173003.pdf (1.1 MB)
Copyright (c) 2021 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
DBS:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2021-09-09
タイトル
タイトル Ensemble BERT-BiLSTM-CNN Model for Sequence Classification
タイトル
言語 en
タイトル Ensemble BERT-BiLSTM-CNN Model for Sequence Classification
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
National Institute of Informatics
著者所属
National Institute of Informatics
著者所属(英)
en
National Institute of Informatics
著者所属(英)
en
National Institute of Informatics
著者名 Vuong, Thi Hong

× Vuong, Thi Hong

Vuong, Thi Hong

Search repository
Atsuhiro, Takasu

× Atsuhiro, Takasu

Atsuhiro, Takasu

Search repository
著者名(英) Vuong, Thi Hong

× Vuong, Thi Hong

en Vuong, Thi Hong

Search repository
Atsuhiro, Takasu

× Atsuhiro, Takasu

en Atsuhiro, Takasu

Search repository
論文抄録
内容記述タイプ Other
内容記述 Ensemble methods use multiple learning algorithms to obtain better predictive performance. Currently, deep learning models with multilayer processing architecture are showed that the performance is better than the traditional classification models. Ensemble deep learning models combine the advantages of both ensemble learning and deep learning such that the final model has better performance. This paper presents a novel ensemble deep learning method, achieving robust and effective sequence classification facing sparse data. We use the BERT (Bidirectional Encoder Representation from Transformers) as the word embedding method. Then, we integrate the BiLSTM (Bidirectional Long Short-Term Memory) and CNN (Convolutional Neural Network) with an attention mechanism for sequence classification. We evaluate our ensemble models with two datasets with the different baseline methods. The first dataset is from IMDB and contains 50,000 movie reviews, labeled with two sentiment classes. The second dataset is the Toxic Comment Dataset with more than 150,000 comments for six classes. The experimental results show that our proposed method provides an accurate, reliable, and effective solution for sequence data classification.
論文抄録(英)
内容記述タイプ Other
内容記述 Ensemble methods use multiple learning algorithms to obtain better predictive performance. Currently, deep learning models with multilayer processing architecture are showed that the performance is better than the traditional classification models. Ensemble deep learning models combine the advantages of both ensemble learning and deep learning such that the final model has better performance. This paper presents a novel ensemble deep learning method, achieving robust and effective sequence classification facing sparse data. We use the BERT (Bidirectional Encoder Representation from Transformers) as the word embedding method. Then, we integrate the BiLSTM (Bidirectional Long Short-Term Memory) and CNN (Convolutional Neural Network) with an attention mechanism for sequence classification. We evaluate our ensemble models with two datasets with the different baseline methods. The first dataset is from IMDB and contains 50,000 movie reviews, labeled with two sentiment classes. The second dataset is the Toxic Comment Dataset with more than 150,000 comments for six classes. The experimental results show that our proposed method provides an accurate, reliable, and effective solution for sequence data classification.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10112482
書誌情報 研究報告データベースシステム(DBS)

巻 2021-DBS-173, 号 3, p. 1-6, 発行日 2021-09-09
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-871X
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:23:56.110224
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3