ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. ソフトウェアエンジニアリングシンポジウム
  4. 2021

Combining Attention-based Gated Bidirectional LSTM and ODCN for Software Defect Prediction

https://ipsj.ixsq.nii.ac.jp/records/212701
https://ipsj.ixsq.nii.ac.jp/records/212701
f3da83b4-57e1-4fbe-8324-0000d2fc39d7
名前 / ファイル ライセンス アクション
IPSJ-SES2021028.pdf IPSJ-SES2021028.pdf (1.6 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2021-08-30
タイトル
タイトル Combining Attention-based Gated Bidirectional LSTM and ODCN for Software Defect Prediction
タイトル
言語 en
タイトル Combining Attention-based Gated Bidirectional LSTM and ODCN for Software Defect Prediction
言語
言語 eng
キーワード
主題Scheme Other
主題 予測・信頼性
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Hiroshima University
著者所属
Hiroshima University
著者所属
Hiroshima University
著者所属(英)
en
Hiroshima University
著者所属(英)
en
Hiroshima University
著者所属(英)
en
Hiroshima University
著者名 Dingbang, Fang

× Dingbang, Fang

Dingbang, Fang

Search repository
Shaoying, Liu

× Shaoying, Liu

Shaoying, Liu

Search repository
Ai, Liu

× Ai, Liu

Ai, Liu

Search repository
著者名(英) Dingbang, Fang

× Dingbang, Fang

en Dingbang, Fang

Search repository
Shaoying, Liu

× Shaoying, Liu

en Shaoying, Liu

Search repository
Ai, Liu

× Ai, Liu

en Ai, Liu

Search repository
論文抄録
内容記述タイプ Other
内容記述 Software reliability plays an important role in the software lifecycle. Traditional defect prediction adopts static metrics as manual features to predict defects. Although static metrics can measure the complexity of software, they lack semantic and structural information about the code. This paper proposes a novel neural network: GB-ODCN, capable of capturing critical features from the source code to predict defects. GL-ODCN consists of a gated bi-directional long short-term memory network (Bi-LSTM) and a one-dimensional convolutional neural network (ODCN). Bi-LSTM constructs dependency of semantic features from the code. Besides, ODCN captures high-level semantic features for judging whether there are defects in the code. Moreover, attention mechanisms based on both networks enhance the importance of features by assigning weights. Experimental results show that GB-ODCN outperforms current state-of-the-art algorithms on several open-source repositories.
論文抄録(英)
内容記述タイプ Other
内容記述 Software reliability plays an important role in the software lifecycle. Traditional defect prediction adopts static metrics as manual features to predict defects. Although static metrics can measure the complexity of software, they lack semantic and structural information about the code. This paper proposes a novel neural network: GB-ODCN, capable of capturing critical features from the source code to predict defects. GL-ODCN consists of a gated bi-directional long short-term memory network (Bi-LSTM) and a one-dimensional convolutional neural network (ODCN). Bi-LSTM constructs dependency of semantic features from the code. Besides, ODCN captures high-level semantic features for judging whether there are defects in the code. Moreover, attention mechanisms based on both networks enhance the importance of features by assigning weights. Experimental results show that GB-ODCN outperforms current state-of-the-art algorithms on several open-source repositories.
書誌情報 ソフトウェアエンジニアリングシンポジウム2021論文集

巻 2021, p. 175-180, 発行日 2021-08-30
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:24:38.535768
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3