ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ユビキタスコンピューティングシステム(UBI)
  3. 2021
  4. 2021-UBI-071

Preliminary investigation of obstacle recognition via smartphone active sound sensing for pedestrian safety

https://ipsj.ixsq.nii.ac.jp/records/212466
https://ipsj.ixsq.nii.ac.jp/records/212466
8ed81c37-d518-42b6-8e3a-cf65001169c9
名前 / ファイル ライセンス アクション
IPSJ-UBI21071021.pdf IPSJ-UBI21071021.pdf (1.3 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2021-08-26
タイトル
タイトル Preliminary investigation of obstacle recognition via smartphone active sound sensing for pedestrian safety
タイトル
言語 en
タイトル Preliminary investigation of obstacle recognition via smartphone active sound sensing for pedestrian safety
言語
言語 eng
キーワード
主題Scheme Other
主題 無線
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Thilina, Dissanayake

× Thilina, Dissanayake

Thilina, Dissanayake

Search repository
前川, 卓也

× 前川, 卓也

前川, 卓也

Search repository
原, 隆浩

× 原, 隆浩

原, 隆浩

Search repository
論文抄録
内容記述タイプ Other
内容記述 To ensure the safety of the pedestrians that use a smartphone while walking, numerous smartphone applications have been developed. The most common method is to use the back camera of the smartphone to record the video in real-time to recognize obstacles such as approaching vehicles and people. However, this imposes problems such as limited detection ranges, and poor performance in the dark. To overcome these problems, we design a method that can recognize common obstacles such as vehicles, trees, signposts, etc. using smartphone active sound sensing. We mimic the echolocation of bats and emit sine waves and sweep signals from the smartphone and record the reflected waves. We exploit the spectral and spatial characteristics of the stationary and non-stationary obstacles and recognize them, making our method adaptable to numerous applications such as assisting visually impaired people, managing smartphone alert levels, and providing information regarding how crowded the sidewalk is.
論文抄録(英)
内容記述タイプ Other
内容記述 To ensure the safety of the pedestrians that use a smartphone while walking, numerous smartphone applications have been developed. The most common method is to use the back camera of the smartphone to record the video in real-time to recognize obstacles such as approaching vehicles and people. However, this imposes problems such as limited detection ranges, and poor performance in the dark. To overcome these problems, we design a method that can recognize common obstacles such as vehicles, trees, signposts, etc. using smartphone active sound sensing. We mimic the echolocation of bats and emit sine waves and sweep signals from the smartphone and record the reflected waves. We exploit the spectral and spatial characteristics of the stationary and non-stationary obstacles and recognize them, making our method adaptable to numerous applications such as assisting visually impaired people, managing smartphone alert levels, and providing information regarding how crowded the sidewalk is.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11838947
書誌情報 研究報告ユビキタスコンピューティングシステム(UBI)

巻 2021-UBI-71, 号 21, p. 1-8, 発行日 2021-08-26
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8698
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:30:38.117560
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3