ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. データベース(TOD)[電子情報通信学会データ工学研究専門委員会共同編集]
  3. Vol.14
  4. No.3

Effects and Mitigation of Out-of-vocabulary in Universal Language Models

https://ipsj.ixsq.nii.ac.jp/records/211922
https://ipsj.ixsq.nii.ac.jp/records/211922
49afc794-3ae2-4858-aa5e-3fc3f1a0c951
名前 / ファイル ライセンス アクション
IPSJ-TOD1403003.pdf IPSJ-TOD1403003.pdf (980.4 kB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2021-07-13
タイトル
タイトル Effects and Mitigation of Out-of-vocabulary in Universal Language Models
タイトル
言語 en
タイトル Effects and Mitigation of Out-of-vocabulary in Universal Language Models
言語
言語 eng
キーワード
主題Scheme Other
主題 [研究論文] Natural language processing, Machine learning, Transfer learning, Language models
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Tokyo Institute of Technology/Presently with Odd Concepts Inc.
著者所属
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology / Presently with Odd Concepts Inc.
著者所属(英)
en
Tokyo Institute of Technology
著者名 Sangwhan, Moon

× Sangwhan, Moon

Sangwhan, Moon

Search repository
Naoaki, Okazaki

× Naoaki, Okazaki

Naoaki, Okazaki

Search repository
著者名(英) Sangwhan, Moon

× Sangwhan, Moon

en Sangwhan, Moon

Search repository
Naoaki, Okazaki

× Naoaki, Okazaki

en Naoaki, Okazaki

Search repository
論文抄録
内容記述タイプ Other
内容記述 One of the most important recent natural language processing (NLP) trends is transfer learning - using representations from language models implemented through a neural network to perform other tasks. While transfer learning is a promising and robust method, downstream task performance in transfer learning depends on the robustness of the backbone model's vocabulary, which in turn represents both the positive and negative characteristics of the corpus used to train it. With subword tokenization, out-of-vocabulary (OOV) is generally assumed to be a solved problem. Still, in languages with a large alphabet such as Chinese, Japanese, and Korean (CJK), this assumption does not hold. In our work, we demonstrate the adverse effects of OOV in the context of transfer learning in CJK languages, then propose a novel approach to maximize the utility of a pre-trained model suffering from OOV. Additionally, we further investigate the correlation of OOV to task performance and explore if and how mitigation can salvage a model with high OOV.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 One of the most important recent natural language processing (NLP) trends is transfer learning - using representations from language models implemented through a neural network to perform other tasks. While transfer learning is a promising and robust method, downstream task performance in transfer learning depends on the robustness of the backbone model's vocabulary, which in turn represents both the positive and negative characteristics of the corpus used to train it. With subword tokenization, out-of-vocabulary (OOV) is generally assumed to be a solved problem. Still, in languages with a large alphabet such as Chinese, Japanese, and Korean (CJK), this assumption does not hold. In our work, we demonstrate the adverse effects of OOV in the context of transfer learning in CJK languages, then propose a novel approach to maximize the utility of a pre-trained model suffering from OOV. Additionally, we further investigate the correlation of OOV to task performance and explore if and how mitigation can salvage a model with high OOV.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464847
書誌情報 情報処理学会論文誌データベース(TOD)

巻 14, 号 3, 発行日 2021-07-13
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7799
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:37:52.166394
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3