Item type |
SIG Technical Reports(1) |
公開日 |
2021-07-13 |
タイトル |
|
|
タイトル |
Surrogate Model for Structural Analysis Simulation using Graph Convolutional Network (Unrefereed Workshop Manuscript) |
タイトル |
|
|
言語 |
en |
|
タイトル |
Surrogate Model for Structural Analysis Simulation using Graph Convolutional Network (Unrefereed Workshop Manuscript) |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
深層学習 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Fujitsu Ltd. |
著者所属 |
|
|
|
Fujitsu Ltd. |
著者所属 |
|
|
|
Fujitsu Ltd. |
著者所属 |
|
|
|
The University of Tokyo |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu Ltd. |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu Ltd. |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu Ltd. |
著者所属(英) |
|
|
|
en |
|
|
The University of Tokyo |
著者名 |
Amir, Haderbache
Koichi, Shirahata
Tsuguchika, Tabaru
Hiroshi, Okuda
|
著者名(英) |
Amir, Haderbache
Koichi, Shirahata
Tsuguchika, Tabaru
Hiroshi, Okuda
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Deep learning surrogate models can replace simulation solver computations by a low-latency inference. However, current surrogate models have important drawbacks such as inefficient memory usage when mapping mesh into regular-grids or limited predictive capabilities to specific input conditions. We propose an efficient surrogate model based on graph convolutional neural network designed for any finite-element mesh and boundary conditions. The accuracy is guaranteed by a mapping of the FEA data into the GCN graph while scalability is achieved by using the principal component analysis on the stiffness matrix. Our technique achieves significant speed-up and maintain accuracy with 1e-03 precision compared with HPC simulations. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Deep learning surrogate models can replace simulation solver computations by a low-latency inference. However, current surrogate models have important drawbacks such as inefficient memory usage when mapping mesh into regular-grids or limited predictive capabilities to specific input conditions. We propose an efficient surrogate model based on graph convolutional neural network designed for any finite-element mesh and boundary conditions. The accuracy is guaranteed by a mapping of the FEA data into the GCN graph while scalability is achieved by using the principal component analysis on the stiffness matrix. Our technique achieves significant speed-up and maintain accuracy with 1e-03 precision compared with HPC simulations. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN10463942 |
書誌情報 |
研究報告ハイパフォーマンスコンピューティング(HPC)
巻 2021-HPC-180,
号 10,
p. 1-9,
発行日 2021-07-13
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8841 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |