ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ハイパフォーマンスコンピューティング(HPC)
  3. 2021
  4. 2021-HPC-180

Surrogate Model for Structural Analysis Simulation using Graph Convolutional Network (Unrefereed Workshop Manuscript)

https://ipsj.ixsq.nii.ac.jp/records/211878
https://ipsj.ixsq.nii.ac.jp/records/211878
d28bd0d4-7e40-4513-8fd6-678a9181e2ef
名前 / ファイル ライセンス アクション
IPSJ-HPC21180010.pdf IPSJ-HPC21180010.pdf (2.3 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2021-07-13
タイトル
タイトル Surrogate Model for Structural Analysis Simulation using Graph Convolutional Network (Unrefereed Workshop Manuscript)
タイトル
言語 en
タイトル Surrogate Model for Structural Analysis Simulation using Graph Convolutional Network (Unrefereed Workshop Manuscript)
言語
言語 eng
キーワード
主題Scheme Other
主題 深層学習
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Fujitsu Ltd.
著者所属
Fujitsu Ltd.
著者所属
Fujitsu Ltd.
著者所属
The University of Tokyo
著者所属(英)
en
Fujitsu Ltd.
著者所属(英)
en
Fujitsu Ltd.
著者所属(英)
en
Fujitsu Ltd.
著者所属(英)
en
The University of Tokyo
著者名 Amir, Haderbache

× Amir, Haderbache

Amir, Haderbache

Search repository
Koichi, Shirahata

× Koichi, Shirahata

Koichi, Shirahata

Search repository
Tsuguchika, Tabaru

× Tsuguchika, Tabaru

Tsuguchika, Tabaru

Search repository
Hiroshi, Okuda

× Hiroshi, Okuda

Hiroshi, Okuda

Search repository
著者名(英) Amir, Haderbache

× Amir, Haderbache

en Amir, Haderbache

Search repository
Koichi, Shirahata

× Koichi, Shirahata

en Koichi, Shirahata

Search repository
Tsuguchika, Tabaru

× Tsuguchika, Tabaru

en Tsuguchika, Tabaru

Search repository
Hiroshi, Okuda

× Hiroshi, Okuda

en Hiroshi, Okuda

Search repository
論文抄録
内容記述タイプ Other
内容記述 Deep learning surrogate models can replace simulation solver computations by a low-latency inference. However, current surrogate models have important drawbacks such as inefficient memory usage when mapping mesh into regular-grids or limited predictive capabilities to specific input conditions. We propose an efficient surrogate model based on graph convolutional neural network designed for any finite-element mesh and boundary conditions. The accuracy is guaranteed by a mapping of the FEA data into the GCN graph while scalability is achieved by using the principal component analysis on the stiffness matrix. Our technique achieves significant speed-up and maintain accuracy with 1e-03 precision compared with HPC simulations.
論文抄録(英)
内容記述タイプ Other
内容記述 Deep learning surrogate models can replace simulation solver computations by a low-latency inference. However, current surrogate models have important drawbacks such as inefficient memory usage when mapping mesh into regular-grids or limited predictive capabilities to specific input conditions. We propose an efficient surrogate model based on graph convolutional neural network designed for any finite-element mesh and boundary conditions. The accuracy is guaranteed by a mapping of the FEA data into the GCN graph while scalability is achieved by using the principal component analysis on the stiffness matrix. Our technique achieves significant speed-up and maintain accuracy with 1e-03 precision compared with HPC simulations.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10463942
書誌情報 研究報告ハイパフォーマンスコンピューティング(HPC)

巻 2021-HPC-180, 号 10, p. 1-9, 発行日 2021-07-13
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8841
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:38:49.843511
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3