ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ユビキタスコンピューティングシステム(UBI)
  3. 2021
  4. 2021-UBI-070

Preliminary Investigation of Using GPS Information to Improve Indoor Pedestrian Dead Reckoning

https://ipsj.ixsq.nii.ac.jp/records/211455
https://ipsj.ixsq.nii.ac.jp/records/211455
c8da7490-f5c8-4efb-8ca2-660b47d93e6e
名前 / ファイル ライセンス アクション
IPSJ-UBI21070009.pdf IPSJ-UBI21070009.pdf (1.9 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2021-05-27
タイトル
タイトル Preliminary Investigation of Using GPS Information to Improve Indoor Pedestrian Dead Reckoning
タイトル
言語 en
タイトル Preliminary Investigation of Using GPS Information to Improve Indoor Pedestrian Dead Reckoning
言語
言語 eng
キーワード
主題Scheme Other
主題 位置推定,都市
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者名 Heng, Zhou

× Heng, Zhou

Heng, Zhou

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
著者名(英) Heng, Zhou

× Heng, Zhou

en Heng, Zhou

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 This study presents a method for improving the accuracy of conventional Pedestrian Dead Reckoning (PDR) using GPS satellite information in indoor environments. The accuracy of PDR is limited by the performance of inertial sensors because the errors caused by users' stride prediction and drift of a gyroscope continuously accumulate, resulting in large errors in predicted trajectories. We employ a neural network based PDR which mainly uses accelerometer and gyroscope embedded in a smartphone to predict the user's trajectories. To fix PDR's error on time, we use some landmarks which can be detected by another neural network that leverages GPS satellite information such as S/N ratio and azimuthal angles to predict if the user is close to windows in a building. Then, we fuse these two predictions based on the particle filter to predict a more accurate user's trajectory. We evaluated our framework using data obtained in different buildings in our campus and confirmed the effectiveness of the framework.
論文抄録(英)
内容記述タイプ Other
内容記述 This study presents a method for improving the accuracy of conventional Pedestrian Dead Reckoning (PDR) using GPS satellite information in indoor environments. The accuracy of PDR is limited by the performance of inertial sensors because the errors caused by users' stride prediction and drift of a gyroscope continuously accumulate, resulting in large errors in predicted trajectories. We employ a neural network based PDR which mainly uses accelerometer and gyroscope embedded in a smartphone to predict the user's trajectories. To fix PDR's error on time, we use some landmarks which can be detected by another neural network that leverages GPS satellite information such as S/N ratio and azimuthal angles to predict if the user is close to windows in a building. Then, we fuse these two predictions based on the particle filter to predict a more accurate user's trajectory. We evaluated our framework using data obtained in different buildings in our campus and confirmed the effectiveness of the framework.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11838947
書誌情報 研究報告ユビキタスコンピューティングシステム(UBI)

巻 2021-UBI-70, 号 9, p. 1-8, 発行日 2021-05-27
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8698
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:47:37.390019
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3