ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.62
  3. No.5

MirrorNet: A Deep Reflective Approach to 2D Pose Estimation for Single-Person Images

https://ipsj.ixsq.nii.ac.jp/records/211203
https://ipsj.ixsq.nii.ac.jp/records/211203
6bae865f-a555-49ed-bc50-f4405ed02e93
名前 / ファイル ライセンス アクション
IPSJ-JNL6205013.pdf IPSJ-JNL6205013.pdf (6.0 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2021-05-15
タイトル
タイトル MirrorNet: A Deep Reflective Approach to 2D Pose Estimation for Single-Person Images
タイトル
言語 en
タイトル MirrorNet: A Deep Reflective Approach to 2D Pose Estimation for Single-Person Images
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文] 2D pose estimation, amortized variational inference, variational autoencoder, mirror system
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Waseda University
著者所属
Kyoto University
著者所属
National Institute of Advanced Industrial Science and Technology (AIST)
著者所属
National Institute of Advanced Industrial Science and Technology (AIST)
著者所属
National Institute of Advanced Industrial Science and Technology (AIST)
著者所属
Waseda Research Institute for Science and Engineering
著者所属(英)
en
Waseda University
著者所属(英)
en
Kyoto University
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology (AIST)
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology (AIST)
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology (AIST)
著者所属(英)
en
Waseda Research Institute for Science and Engineering
著者名 Takayuki, Nakatsuka

× Takayuki, Nakatsuka

Takayuki, Nakatsuka

Search repository
Kazuyoshi, Yoshii

× Kazuyoshi, Yoshii

Kazuyoshi, Yoshii

Search repository
Yuki, Koyama

× Yuki, Koyama

Yuki, Koyama

Search repository
Satoru, Fukayama

× Satoru, Fukayama

Satoru, Fukayama

Search repository
Masataka, Goto

× Masataka, Goto

Masataka, Goto

Search repository
Shigeo, Morishima

× Shigeo, Morishima

Shigeo, Morishima

Search repository
著者名(英) Takayuki, Nakatsuka

× Takayuki, Nakatsuka

en Takayuki, Nakatsuka

Search repository
Kazuyoshi, Yoshii

× Kazuyoshi, Yoshii

en Kazuyoshi, Yoshii

Search repository
Yuki, Koyama

× Yuki, Koyama

en Yuki, Koyama

Search repository
Satoru, Fukayama

× Satoru, Fukayama

en Satoru, Fukayama

Search repository
Masataka, Goto

× Masataka, Goto

en Masataka, Goto

Search repository
Shigeo, Morishima

× Shigeo, Morishima

en Shigeo, Morishima

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper proposes a statistical approach to 2D pose estimation from human images. The main problems with the standard supervised approach, which is based on a deep recognition (image-to-pose) model, are that it often yields anatomically implausible poses, and its performance is limited by the amount of paired data. To solve these problems, we propose a semi-supervised method that can make effective use of images with and without pose annotations. Specifically, we formulate a hierarchical generative model of poses and images by integrating a deep generative model of poses from pose features with that of images from poses and image features. We then introduce a deep recognition model that infers poses from images. Given images as observed data, these models can be trained jointly in a hierarchical variational autoencoding (image-to-pose-to-feature-to-pose-to-image) manner. The results of experiments show that the proposed reflective architecture makes estimated poses anatomically plausible, and the pose estimation performance is improved by integrating the recognition and generative models and also by feeding non-annotated images.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.406
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 This paper proposes a statistical approach to 2D pose estimation from human images. The main problems with the standard supervised approach, which is based on a deep recognition (image-to-pose) model, are that it often yields anatomically implausible poses, and its performance is limited by the amount of paired data. To solve these problems, we propose a semi-supervised method that can make effective use of images with and without pose annotations. Specifically, we formulate a hierarchical generative model of poses and images by integrating a deep generative model of poses from pose features with that of images from poses and image features. We then introduce a deep recognition model that infers poses from images. Given images as observed data, these models can be trained jointly in a hierarchical variational autoencoding (image-to-pose-to-feature-to-pose-to-image) manner. The results of experiments show that the proposed reflective architecture makes estimated poses anatomically plausible, and the pose estimation performance is improved by integrating the recognition and generative models and also by feeding non-annotated images.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.406
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 62, 号 5, 発行日 2021-05-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:52:48.571080
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3