ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2021
  4. 2021-CVIM-226

Predicting Humor in Visual and Language Modalities

https://ipsj.ixsq.nii.ac.jp/records/211154
https://ipsj.ixsq.nii.ac.jp/records/211154
1b7c13b9-a5d9-4543-bd3c-5ccdeff8e18f
名前 / ファイル ライセンス アクション
IPSJ-CVIM21226007.pdf IPSJ-CVIM21226007.pdf (3.4 MB)
Copyright (c) 2021 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
CVIM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2021-05-13
タイトル
タイトル Predicting Humor in Visual and Language Modalities
タイトル
言語 en
タイトル Predicting Humor in Visual and Language Modalities
言語
言語 eng
キーワード
主題Scheme Other
主題 画像と言語・音響
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Osaka University
著者所属
Osaka University
著者所属
Osaka University
著者所属(英)
en
Osaka University
著者所属(英)
en
Osaka University
著者所属(英)
en
Osaka University
著者名 Zekun, Yang

× Zekun, Yang

Zekun, Yang

Search repository
Yuta, Nakashima

× Yuta, Nakashima

Yuta, Nakashima

Search repository
Haruo, Takemura

× Haruo, Takemura

Haruo, Takemura

Search repository
著者名(英) Zekun, Yang

× Zekun, Yang

en Zekun, Yang

Search repository
Yuta, Nakashima

× Yuta, Nakashima

en Yuta, Nakashima

Search repository
Haruo, Takemura

× Haruo, Takemura

en Haruo, Takemura

Search repository
論文抄録
内容記述タイプ Other
内容記述 Finding humor in videos is an interesting but challenging task because humor can be induced by various signals in the visual, linguistic, and vocal modalities emitted by human. Previous methods mainly predict humor in the sentence level and with single modality, which often ignore humor caused by e.g., actions. In this work, we propose a multi-modal humor prediction method to find temporal segments that involve humor in videos. Our method adopts a sliding window to divide the video and uses the visual modality described by pose and facial features, along with the linguistic modality given as subtitles for humor prediction. We use long short term memory (LSTM) networks to model poses and faces and use pre-trained BERT to model the subtitles. Experimental results with the dataset based on a sitcom TV drama series show that our method helps improve the performance of humor prediction.
論文抄録(英)
内容記述タイプ Other
内容記述 Finding humor in videos is an interesting but challenging task because humor can be induced by various signals in the visual, linguistic, and vocal modalities emitted by human. Previous methods mainly predict humor in the sentence level and with single modality, which often ignore humor caused by e.g., actions. In this work, we propose a multi-modal humor prediction method to find temporal segments that involve humor in videos. Our method adopts a sliding window to divide the video and uses the visual modality described by pose and facial features, along with the linguistic modality given as subtitles for humor prediction. We use long short term memory (LSTM) networks to model poses and faces and use pre-trained BERT to model the subtitles. Experimental results with the dataset based on a sitcom TV drama series show that our method helps improve the performance of humor prediction.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2021-CVIM-226, 号 7, p. 1-6, 発行日 2021-05-13
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:53:31.913511
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3