{"created":"2025-01-19T01:12:10.853565+00:00","updated":"2025-01-19T17:57:15.564179+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00210983","sets":["1164:2592:10486:10582"]},"path":["10582"],"owner":"44499","recid":"210983","title":["Max-Min 3-dispersion on a Convex Polygon"],"pubdate":{"attribute_name":"公開日","attribute_value":"2021-04-30"},"_buckets":{"deposit":"1ea3cc25-6598-4643-bf30-909406016d57"},"_deposit":{"id":"210983","pid":{"type":"depid","value":"210983","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"Max-Min 3-dispersion on a Convex Polygon","author_link":["535217","535213","535219","535221","535222","535211","535220","535216","535212","535218","535214","535215"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Max-Min 3-dispersion on a Convex Polygon"},{"subitem_title":"Max-Min 3-dispersion on a Convex Polygon","subitem_title_language":"en"}]},"item_type_id":"4","publish_date":"2021-04-30","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"Kyoto University"},{"subitem_text_value":"Gunma University"},{"subitem_text_value":"Yamagata University"},{"subitem_text_value":"National Institute of Informatics"},{"subitem_text_value":"Kyushu University"},{"subitem_text_value":"Iwate University"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Kyoto University","subitem_text_language":"en"},{"subitem_text_value":"Gunma University","subitem_text_language":"en"},{"subitem_text_value":"Yamagata University","subitem_text_language":"en"},{"subitem_text_value":"National Institute of Informatics","subitem_text_language":"en"},{"subitem_text_value":"Kyushu University","subitem_text_language":"en"},{"subitem_text_value":"Iwate University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/210983/files/IPSJ-AL21183007.pdf","label":"IPSJ-AL21183007.pdf"},"date":[{"dateType":"Available","dateValue":"2023-04-30"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL21183007.pdf","filesize":[{"value":"699.5 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"8f0361a9-03b1-4de3-94eb-50cdfe983be8","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2021 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Yasuaki, Kobayashi"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Shin-ichi, Nakano"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Kei, Uchizawa"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Takeaki, Uno"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Yutaro, Yamaguchi"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Katsuhisa, Yamanaka"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Yasuaki, Kobayashi","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Shin-ichi, Nakano","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Kei, Uchizawa","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Takeaki, Uno","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Yutaro, Yamaguchi","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Katsuhisa, Yamanaka","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8566","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"Given a set P of n points and an integer k, we wish to place k facilities on points in P so that the minimum distance between facilities is maximized. The problem is called the k-dispersion problem, and the set of such k points is called a k-dispersion of P. Note that the 2-dispersion problem corresponds to the computation of the diameter of P. Thus, the k-dispersion problem is a natural generalization of the diameter problem. In this paper, we consider the case of k = 3, which is the 3-dispersion problem, when P is in convex position. We present an O(n2)-time algorithm to compute a 3-dispersion of P.","subitem_description_type":"Other"}]},"item_4_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"Given a set P of n points and an integer k, we wish to place k facilities on points in P so that the minimum distance between facilities is maximized. The problem is called the k-dispersion problem, and the set of such k points is called a k-dispersion of P. Note that the 2-dispersion problem corresponds to the computation of the diameter of P. Thus, the k-dispersion problem is a natural generalization of the diameter problem. In this paper, we consider the case of k = 3, which is the 3-dispersion problem, when P is in convex position. We present an O(n2)-time algorithm to compute a 3-dispersion of P.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"4","bibliographic_titles":[{"bibliographic_title":"研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2021-04-30","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"7","bibliographicVolumeNumber":"2021-AL-183"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"id":210983,"links":{}}