ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア、分散、協調とモバイルシンポジウム(DICOMO)
  4. 2020

A Method of Gas Source Localization from Sensor Network using Machine Learning

https://ipsj.ixsq.nii.ac.jp/records/210875
https://ipsj.ixsq.nii.ac.jp/records/210875
ce2792f0-7d5d-4734-9959-de973104954b
名前 / ファイル ライセンス アクション
IPSJ-DICOMO2020162.pdf IPSJ-DICOMO2020162.pdf (1.1 MB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2020-06-17
タイトル
タイトル A Method of Gas Source Localization from Sensor Network using Machine Learning
タイトル
言語 en
タイトル A Method of Gas Source Localization from Sensor Network using Machine Learning
言語
言語 eng
キーワード
主題Scheme Other
主題 Internet of Things
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Graduated School of Engineering, Kobe University
著者所属
Graduated School of Engineering, Kobe University
著者所属
Graduated School of Engineering, Kobe University
著者所属
Graduated School of Engineering, Kobe University
著者所属
Graduated School of Engineering, Kobe University
著者所属(英)
en
Graduated School of Engineering, Kobe University
著者所属(英)
en
Graduated School of Engineering, Kobe University
著者所属(英)
en
Graduated School of Engineering, Kobe University
著者所属(英)
en
Graduated School of Engineering, Kobe University
著者所属(英)
en
Graduated School of Engineering, Kobe University
著者名 Arunothaikrit, Worachat

× Arunothaikrit, Worachat

Arunothaikrit, Worachat

Search repository
Ohnishi, Ayumi

× Ohnishi, Ayumi

Ohnishi, Ayumi

Search repository
Tsuchida, Shuhei

× Tsuchida, Shuhei

Tsuchida, Shuhei

Search repository
Terada, Tsutomu

× Terada, Tsutomu

Terada, Tsutomu

Search repository
Tsukamoto, Masahiko

× Tsukamoto, Masahiko

Tsukamoto, Masahiko

Search repository
著者名(英) Arunothaikrit, Worachat

× Arunothaikrit, Worachat

en Arunothaikrit, Worachat

Search repository
Ohnishi, Ayumi

× Ohnishi, Ayumi

en Ohnishi, Ayumi

Search repository
Tsuchida, Shuhei

× Tsuchida, Shuhei

en Tsuchida, Shuhei

Search repository
Terada, Tsutomu

× Terada, Tsutomu

en Terada, Tsutomu

Search repository
Tsukamoto, Masahiko

× Tsukamoto, Masahiko

en Tsukamoto, Masahiko

Search repository
論文抄録
内容記述タイプ Other
内容記述 Gas source localization (GSL) is one of the most important tasks to find the origin of the gas source to avoid potential danger. GSL in natural conditions is a big challenge because it has many complex conditions, especially when the wind blows in an unpredictable direction. Mobile robots use a lot of energy to work and still have short working time. That makes using an immobile sensor is better, just placing it in the right place will lead to a longer lifetime and use less energy. However, finding the location of a gas leak is difficult both on relevant and irrelevant factors. Here we show that the location and distance of the gas emission source between the gas source to the station gas sensor array in the indoor environment. We found that the machine learning algorithm is applicable to localize our experiment gas source using standard performance metrics for the regression problem in machine learning: Mean absolute error (MAE) metric. Currently, an estimated position of the source with a deviation of 3.90 cm (93.1% using R-Squared) by using Random Forests Regression (RF regression). Our results show how the stationary sensor network tends to work in finding GSLs in an indoor environment using machine learning to find the distance between the gas and the sensor in natural wind conditions. We expect our experiment to be the starting point for bringing GSL to more complex forms, for example finding distance in multiple wind direction conditions and using it on a daily basis.
論文抄録(英)
内容記述タイプ Other
内容記述 Gas source localization (GSL) is one of the most important tasks to find the origin of the gas source to avoid potential danger. GSL in natural conditions is a big challenge because it has many complex conditions, especially when the wind blows in an unpredictable direction. Mobile robots use a lot of energy to work and still have short working time. That makes using an immobile sensor is better, just placing it in the right place will lead to a longer lifetime and use less energy. However, finding the location of a gas leak is difficult both on relevant and irrelevant factors. Here we show that the location and distance of the gas emission source between the gas source to the station gas sensor array in the indoor environment. We found that the machine learning algorithm is applicable to localize our experiment gas source using standard performance metrics for the regression problem in machine learning: Mean absolute error (MAE) metric. Currently, an estimated position of the source with a deviation of 3.90 cm (93.1% using R-Squared) by using Random Forests Regression (RF regression). Our results show how the stationary sensor network tends to work in finding GSLs in an indoor environment using machine learning to find the distance between the gas and the sensor in natural wind conditions. We expect our experiment to be the starting point for bringing GSL to more complex forms, for example finding distance in multiple wind direction conditions and using it on a daily basis.
書誌情報 マルチメディア,分散協調とモバイルシンポジウム2181論文集

巻 2020, p. 1120-1125, 発行日 2020-06-17
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 17:59:49.973423
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3