ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. マルチメディア、分散、協調とモバイルシンポジウム(DICOMO)
  4. 2020

Preliminary Investigation of Unsupervised Factory Activity Recognition with Wearable Sensors via Temporal Structure of Multiple Motifs

https://ipsj.ixsq.nii.ac.jp/records/210770
https://ipsj.ixsq.nii.ac.jp/records/210770
8b46f018-0777-4e5e-8531-5bf8603bc462
名前 / ファイル ライセンス アクション
IPSJ-DICOMO2020057.pdf IPSJ-DICOMO2020057.pdf (2.9 MB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2020-06-17
タイトル
タイトル Preliminary Investigation of Unsupervised Factory Activity Recognition with Wearable Sensors via Temporal Structure of Multiple Motifs
タイトル
言語 en
タイトル Preliminary Investigation of Unsupervised Factory Activity Recognition with Wearable Sensors via Temporal Structure of Multiple Motifs
言語
言語 eng
キーワード
主題Scheme Other
主題 行動認識
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者名 Qingxin, Xia

× Qingxin, Xia

Qingxin, Xia

Search repository
Korpela, Joseph

× Korpela, Joseph

Korpela, Joseph

Search repository
Namioka, Yasuo

× Namioka, Yasuo

Namioka, Yasuo

Search repository
Maekawa, Takuya

× Maekawa, Takuya

Maekawa, Takuya

Search repository
著者名(英) Qingxin, Xia

× Qingxin, Xia

en Qingxin, Xia

Search repository
Korpela, Joseph

× Korpela, Joseph

en Korpela, Joseph

Search repository
Namioka, Yasuo

× Namioka, Yasuo

en Namioka, Yasuo

Search repository
Maekawa, Takuya

× Maekawa, Takuya

en Maekawa, Takuya

Search repository
論文抄録
内容記述タイプ Other
内容記述 In this study, we propose a robust unsupervised learning technique that makes use of two types of sensor data motifs to track the starting time of each operation in every iteration of work periods. A period motif only occurs once in each work period that is used to roughly detect the duration of work periods. An action motif occurs many times in each work period, corresponding to some basic actions in the period. A temporal structure is then constructed based on the temporal distances among motifs in the first period, which is used to improve motif tracking in the following periods as well as roughly detect the location of outliers. We run particle filters to track the starting time of operations and select a best particle series based on the extracted motifs. We evaluate the proposed method using sensor data collected from workers in actual factories and achieved state-of-the-art performance.
論文抄録(英)
内容記述タイプ Other
内容記述 In this study, we propose a robust unsupervised learning technique that makes use of two types of sensor data motifs to track the starting time of each operation in every iteration of work periods. A period motif only occurs once in each work period that is used to roughly detect the duration of work periods. An action motif occurs many times in each work period, corresponding to some basic actions in the period. A temporal structure is then constructed based on the temporal distances among motifs in the first period, which is used to improve motif tracking in the following periods as well as roughly detect the location of outliers. We run particle filters to track the starting time of operations and select a best particle series based on the extracted motifs. We evaluate the proposed method using sensor data collected from workers in actual factories and achieved state-of-the-art performance.
書誌情報 マルチメディア,分散協調とモバイルシンポジウム2076論文集

巻 2020, p. 374-381, 発行日 2020-06-17
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:01:49.222327
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3