@techreport{oai:ipsj.ixsq.nii.ac.jp:00210480,
 author = {太田, 菜月 and 細川, 利典 and 山崎, 浩二 and 山内, ゆかり and 新井, 雅之 and Natsuki, Ota and Toshinori, Hosokawa and Koji, Yamazaki and Yukari, Yamauchi and Masayuki, Arai},
 issue = {31},
 month = {Mar},
 note = {特定の故障モデルの故障診断は誤診断や解なしという診断を起こす可能性があるため,スキャン設計回路を対象としたマルチサイクルキャプチャテスト集合を用いたユニバーサル論理故障モデルに対する故障診断法が提案されている.その故障診断手法では,被疑故障信号線の欠陥種類の推定がされないことが課題に残る.本論文では,被疑故障信号線に対して主な論理故障モデルである縮退故障,支配型ブリッジ故障,オープン故障を表すそれぞれの特徴量を求め,人工ニューラルネットワークを用いて,被疑故障信号線の欠陥種類を推定する手法を提案する., Since fault diagnosis methods for specified fault models might cause misprediction and non-prediction, a fault diagnosis method for a single universal logical fault model using multi-cycle capture test sets was proposed for scan design circuits. However, the problem remains that the fault diagnosis method does not estimate types of defects corresponding to suspected faults. In this paper, we propose an estimation method of defect types using neural networks with the features represent the major logical fault models such as stuck-at 0 fault, stuck-at 1 fault, dominant bridging fault, and open fault.},
 title = {ニューラルネットワークを用いた被疑論理故障信号線の欠陥種類推定法},
 year = {2021}
}