ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.62
  3. No.3

A Self-stabilizing 1-maximal Independent Set Algorithm

https://ipsj.ixsq.nii.ac.jp/records/210364
https://ipsj.ixsq.nii.ac.jp/records/210364
f672fafe-2922-4a34-b2eb-116e2a887ae2
名前 / ファイル ライセンス アクション
IPSJ-JNL6203021.pdf IPSJ-JNL6203021.pdf (797.1 kB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2021-03-15
タイトル
タイトル A Self-stabilizing 1-maximal Independent Set Algorithm
タイトル
言語 en
タイトル A Self-stabilizing 1-maximal Independent Set Algorithm
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文(推薦論文)] distributed system, self-stabilizing algorithm, loop composition, 1-maximal independent set
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
Faculty of Advanced Science and Technology and Ryukoku Center for Mathematical Sciences and Networks, Ryukoku University
著者所属
Graduate School of Information Science and Technology, Osaka University
著者所属
University of Nevada, Las Vegas
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Faculty of Advanced Science and Technology and Ryukoku Center for Mathematical Sciences and Networks, Ryukoku University
著者所属(英)
en
Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
University of Nevada, Las Vegas
著者名 Hideyuki, Tanaka

× Hideyuki, Tanaka

Hideyuki, Tanaka

Search repository
Yuichi, Sudo

× Yuichi, Sudo

Yuichi, Sudo

Search repository
Hirotsugu, Kakugawa

× Hirotsugu, Kakugawa

Hirotsugu, Kakugawa

Search repository
Toshimitsu, Masuzawa

× Toshimitsu, Masuzawa

Toshimitsu, Masuzawa

Search repository
Ajoy, K. Datta

× Ajoy, K. Datta

Ajoy, K. Datta

Search repository
著者名(英) Hideyuki, Tanaka

× Hideyuki, Tanaka

en Hideyuki, Tanaka

Search repository
Yuichi, Sudo

× Yuichi, Sudo

en Yuichi, Sudo

Search repository
Hirotsugu, Kakugawa

× Hirotsugu, Kakugawa

en Hirotsugu, Kakugawa

Search repository
Toshimitsu, Masuzawa

× Toshimitsu, Masuzawa

en Toshimitsu, Masuzawa

Search repository
Ajoy, K. Datta

× Ajoy, K. Datta

en Ajoy, K. Datta

Search repository
論文抄録
内容記述タイプ Other
内容記述 We consider the 1-maximal independent set (1-MIS) problem: given a graph G=(V, E), our goal is to find a 1-maximal independent set (1-MIS) of a given network G, that is, a maximal independent set (MIS) S ⊂ V of G such that S ∪ {v, w} ∖ {u} is not an independent set for any nodes u ∈ S, and v, w ∉ S (v ≠ w). We give a silent, self-stabilizing, and asynchronous distributed algorithm to construct a 1-MIS on a network of any topology. We assume the processes have unique identifiers and the scheduler is weakly-fair and distributed. The time complexity, i.e., the number of rounds to reach a legitimate configuration in the worst case of the proposed algorithm is O(nD), where n is the number of processes in the network and D is the diameter of the network. We use a composition technique called loop composition [Datta et al., 2017] to iterate the same procedure consistently, which results in a small space complexity, O(log n) bits per process.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.247
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 We consider the 1-maximal independent set (1-MIS) problem: given a graph G=(V, E), our goal is to find a 1-maximal independent set (1-MIS) of a given network G, that is, a maximal independent set (MIS) S ⊂ V of G such that S ∪ {v, w} ∖ {u} is not an independent set for any nodes u ∈ S, and v, w ∉ S (v ≠ w). We give a silent, self-stabilizing, and asynchronous distributed algorithm to construct a 1-MIS on a network of any topology. We assume the processes have unique identifiers and the scheduler is weakly-fair and distributed. The time complexity, i.e., the number of rounds to reach a legitimate configuration in the worst case of the proposed algorithm is O(nD), where n is the number of processes in the network and D is the diameter of the network. We use a composition technique called loop composition [Datta et al., 2017] to iterate the same procedure consistently, which results in a small space complexity, O(log n) bits per process.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.29.247
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 62, 号 3, 発行日 2021-03-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:11:18.198501
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3