WEKO3
アイテム
A Self-stabilizing 1-maximal Independent Set Algorithm
https://ipsj.ixsq.nii.ac.jp/records/210364
https://ipsj.ixsq.nii.ac.jp/records/210364f672fafe-2922-4a34-b2eb-116e2a887ae2
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2021 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-03-15 | |||||||||||||||
タイトル | ||||||||||||||||
タイトル | A Self-stabilizing 1-maximal Independent Set Algorithm | |||||||||||||||
タイトル | ||||||||||||||||
言語 | en | |||||||||||||||
タイトル | A Self-stabilizing 1-maximal Independent Set Algorithm | |||||||||||||||
言語 | ||||||||||||||||
言語 | eng | |||||||||||||||
キーワード | ||||||||||||||||
主題Scheme | Other | |||||||||||||||
主題 | [一般論文(推薦論文)] distributed system, self-stabilizing algorithm, loop composition, 1-maximal independent set | |||||||||||||||
資源タイプ | ||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||||
資源タイプ | journal article | |||||||||||||||
著者所属 | ||||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||||
著者所属 | ||||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||||
著者所属 | ||||||||||||||||
Faculty of Advanced Science and Technology and Ryukoku Center for Mathematical Sciences and Networks, Ryukoku University | ||||||||||||||||
著者所属 | ||||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||||
著者所属 | ||||||||||||||||
University of Nevada, Las Vegas | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
Faculty of Advanced Science and Technology and Ryukoku Center for Mathematical Sciences and Networks, Ryukoku University | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
Graduate School of Information Science and Technology, Osaka University | ||||||||||||||||
著者所属(英) | ||||||||||||||||
en | ||||||||||||||||
University of Nevada, Las Vegas | ||||||||||||||||
著者名 |
Hideyuki, Tanaka
× Hideyuki, Tanaka
× Yuichi, Sudo
× Hirotsugu, Kakugawa
× Toshimitsu, Masuzawa
× Ajoy, K. Datta
|
|||||||||||||||
著者名(英) |
Hideyuki, Tanaka
× Hideyuki, Tanaka
× Yuichi, Sudo
× Hirotsugu, Kakugawa
× Toshimitsu, Masuzawa
× Ajoy, K. Datta
|
|||||||||||||||
論文抄録 | ||||||||||||||||
内容記述タイプ | Other | |||||||||||||||
内容記述 | We consider the 1-maximal independent set (1-MIS) problem: given a graph G=(V, E), our goal is to find a 1-maximal independent set (1-MIS) of a given network G, that is, a maximal independent set (MIS) S ⊂ V of G such that S ∪ {v, w} ∖ {u} is not an independent set for any nodes u ∈ S, and v, w ∉ S (v ≠ w). We give a silent, self-stabilizing, and asynchronous distributed algorithm to construct a 1-MIS on a network of any topology. We assume the processes have unique identifiers and the scheduler is weakly-fair and distributed. The time complexity, i.e., the number of rounds to reach a legitimate configuration in the worst case of the proposed algorithm is O(nD), where n is the number of processes in the network and D is the diameter of the network. We use a composition technique called loop composition [Datta et al., 2017] to iterate the same procedure consistently, which results in a small space complexity, O(log n) bits per process. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) DOI http://dx.doi.org/10.2197/ipsjjip.29.247 ------------------------------ |
|||||||||||||||
論文抄録(英) | ||||||||||||||||
内容記述タイプ | Other | |||||||||||||||
内容記述 | We consider the 1-maximal independent set (1-MIS) problem: given a graph G=(V, E), our goal is to find a 1-maximal independent set (1-MIS) of a given network G, that is, a maximal independent set (MIS) S ⊂ V of G such that S ∪ {v, w} ∖ {u} is not an independent set for any nodes u ∈ S, and v, w ∉ S (v ≠ w). We give a silent, self-stabilizing, and asynchronous distributed algorithm to construct a 1-MIS on a network of any topology. We assume the processes have unique identifiers and the scheduler is weakly-fair and distributed. The time complexity, i.e., the number of rounds to reach a legitimate configuration in the worst case of the proposed algorithm is O(nD), where n is the number of processes in the network and D is the diameter of the network. We use a composition technique called loop composition [Datta et al., 2017] to iterate the same procedure consistently, which results in a small space complexity, O(log n) bits per process. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) DOI http://dx.doi.org/10.2197/ipsjjip.29.247 ------------------------------ |
|||||||||||||||
書誌レコードID | ||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||
収録物識別子 | AN00116647 | |||||||||||||||
書誌情報 |
情報処理学会論文誌 巻 62, 号 3, 発行日 2021-03-15 |
|||||||||||||||
ISSN | ||||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||||
収録物識別子 | 1882-7764 |