WEKO3
アイテム
Generating Adversarial Examples for Hardware-Trojan Detection at Gate-Level Netlists
https://ipsj.ixsq.nii.ac.jp/records/210362
https://ipsj.ixsq.nii.ac.jp/records/210362373510ab-c7a3-4f6c-b7a8-72ddc82ba1b0
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2021 by the Information Processing Society of Japan
|
|
オープンアクセス |
Item type | Journal(1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-03-15 | |||||||||||||||||
タイトル | ||||||||||||||||||
タイトル | Generating Adversarial Examples for Hardware-Trojan Detection at Gate-Level Netlists | |||||||||||||||||
タイトル | ||||||||||||||||||
言語 | en | |||||||||||||||||
タイトル | Generating Adversarial Examples for Hardware-Trojan Detection at Gate-Level Netlists | |||||||||||||||||
言語 | ||||||||||||||||||
言語 | eng | |||||||||||||||||
キーワード | ||||||||||||||||||
主題Scheme | Other | |||||||||||||||||
主題 | [特集:組込みシステム工学] hardware Trojan, netlist, logic gate, machine learning, adversarial example | |||||||||||||||||
資源タイプ | ||||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||||||||
資源タイプ | journal article | |||||||||||||||||
著者所属 | ||||||||||||||||||
値 | Dept. Computer Science and Communications Engineering, Waseda University | |||||||||||||||||
著者所属 | ||||||||||||||||||
値 | Dept. Computer Science and Communications Engineering, Waseda University | |||||||||||||||||
著者所属 | ||||||||||||||||||
値 | KDDI Research, Inc. | |||||||||||||||||
著者所属 | ||||||||||||||||||
値 | KDDI Research, Inc. | |||||||||||||||||
著者所属 | ||||||||||||||||||
値 | Research Innovation Center, Waseda University | |||||||||||||||||
著者所属 | ||||||||||||||||||
値 | Dept. Computer Science and Communications Engineering, Waseda University | |||||||||||||||||
著者所属(英) | ||||||||||||||||||
言語 | en | |||||||||||||||||
値 | Dept. Computer Science and Communications Engineering, Waseda University | |||||||||||||||||
著者所属(英) | ||||||||||||||||||
言語 | en | |||||||||||||||||
値 | Dept. Computer Science and Communications Engineering, Waseda University | |||||||||||||||||
著者所属(英) | ||||||||||||||||||
言語 | en | |||||||||||||||||
値 | KDDI Research, Inc. | |||||||||||||||||
著者所属(英) | ||||||||||||||||||
言語 | en | |||||||||||||||||
値 | KDDI Research, Inc. | |||||||||||||||||
著者所属(英) | ||||||||||||||||||
言語 | en | |||||||||||||||||
値 | Research Innovation Center, Waseda University | |||||||||||||||||
著者所属(英) | ||||||||||||||||||
言語 | en | |||||||||||||||||
値 | Dept. Computer Science and Communications Engineering, Waseda University | |||||||||||||||||
著者名 |
Kohei, Nozawa
× Kohei, Nozawa
× Kento, Hasegawa
× Seira, Hidano
× Shinsaku, Kiyomoto
× Kazuo, Hashimoto
× Nozomu, Togawa
|
|||||||||||||||||
著者名(英) |
Kohei, Nozawa
× Kohei, Nozawa
× Kento, Hasegawa
× Seira, Hidano
× Shinsaku, Kiyomoto
× Kazuo, Hashimoto
× Nozomu, Togawa
|
|||||||||||||||||
論文抄録 | ||||||||||||||||||
内容記述タイプ | Other | |||||||||||||||||
内容記述 | Recently, the great demand for integrated circuits (ICs) drives third parties to be involved in IC design and manufacturing steps. At the same time, the threat of injecting a malicious circuit, called a hardware Trojan, by third parties has been increasing. Machine learning is one of the powerful solutions for detecting hardware Trojans. However, a weakness of such a machine-learning-based classification method against adversarial examples (AEs) has been reported, which causes misclassification by adding perturbation in input samples. This paper firstly proposes a framework generating adversarial examples for hardware-Trojan detection at gate-level netlists utilizing neural networks. The proposed framework replaces hardware Trojan circuits with logically equivalent ones, and makes it difficult to detect them. Secondly, we propose a Trojan-net concealment degree (TCD) and a modification evaluating value (MEV) as measures of the amount of modifications. Finally, based on the MEV, we pick up adversarial modification patterns to apply to the circuits against hardware-Trojan detection. The experimental results using benchmarks demonstrate that the proposed framework successfully decreases the true positive rate (TPR) by a maximum of 30.15 points. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) DOI http://dx.doi.org/10.2197/ipsjjip.29.236 ------------------------------ |
|||||||||||||||||
論文抄録(英) | ||||||||||||||||||
内容記述タイプ | Other | |||||||||||||||||
内容記述 | Recently, the great demand for integrated circuits (ICs) drives third parties to be involved in IC design and manufacturing steps. At the same time, the threat of injecting a malicious circuit, called a hardware Trojan, by third parties has been increasing. Machine learning is one of the powerful solutions for detecting hardware Trojans. However, a weakness of such a machine-learning-based classification method against adversarial examples (AEs) has been reported, which causes misclassification by adding perturbation in input samples. This paper firstly proposes a framework generating adversarial examples for hardware-Trojan detection at gate-level netlists utilizing neural networks. The proposed framework replaces hardware Trojan circuits with logically equivalent ones, and makes it difficult to detect them. Secondly, we propose a Trojan-net concealment degree (TCD) and a modification evaluating value (MEV) as measures of the amount of modifications. Finally, based on the MEV, we pick up adversarial modification patterns to apply to the circuits against hardware-Trojan detection. The experimental results using benchmarks demonstrate that the proposed framework successfully decreases the true positive rate (TPR) by a maximum of 30.15 points. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) DOI http://dx.doi.org/10.2197/ipsjjip.29.236 ------------------------------ |
|||||||||||||||||
書誌レコードID | ||||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||||
収録物識別子 | AN00116647 | |||||||||||||||||
書誌情報 |
情報処理学会論文誌 巻 62, 号 3, 発行日 2021-03-15 |
|||||||||||||||||
ISSN | ||||||||||||||||||
収録物識別子タイプ | ISSN | |||||||||||||||||
収録物識別子 | 1882-7764 |