Item type |
SIG Technical Reports(1) |
公開日 |
2021-03-10 |
タイトル |
|
|
タイトル |
A 3/4 Differential Approximation Algorithm for Traveling Salesman Problem |
タイトル |
|
|
言語 |
en |
|
タイトル |
A 3/4 Differential Approximation Algorithm for Traveling Salesman Problem |
言語 |
|
|
言語 |
eng |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
著者所属 |
|
|
|
Research Institute for Mathematical Sciences, Kyoto University |
著者所属 |
|
|
|
Research Institute for Mathematical Sciences, Kyoto University |
著者所属(英) |
|
|
|
en |
|
|
Research Institute for Mathematical Sciences, Kyoto University |
著者所属(英) |
|
|
|
en |
|
|
Research Institute for Mathematical Sciences, Kyoto University |
著者名 |
Yuki, Amano
Kazuhisa, Makino
|
著者名(英) |
Yuki, Amano
Kazuhisa, Makino
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
In this paper, we consider differential approximability of the traveling salesman problem (TSP). The differential approximation ratio was proposed by Demange and Paschos in 1996 as an approximation criterion that is invariant under affine transformation of the objective function. We show that TSP is 3/4-differential approximable, which improves the currently best known bound 3/4 - O(1/n) due to Escoffier and Monnot in 2008, where n denotes the number of vertices in the given graph. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
In this paper, we consider differential approximability of the traveling salesman problem (TSP). The differential approximation ratio was proposed by Demange and Paschos in 1996 as an approximation criterion that is invariant under affine transformation of the objective function. We show that TSP is 3/4-differential approximable, which improves the currently best known bound 3/4 - O(1/n) due to Escoffier and Monnot in 2008, where n denotes the number of vertices in the given graph. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN1009593X |
書誌情報 |
研究報告アルゴリズム(AL)
巻 2021-AL-182,
号 12,
p. 1-7,
発行日 2021-03-10
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2188-8566 |
Notice |
|
|
|
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc. |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |