Item type |
Trans(1) |
公開日 |
2021-02-17 |
タイトル |
|
|
タイトル |
Power Prediction for Sustainable HPC |
タイトル |
|
|
言語 |
en |
|
タイトル |
Power Prediction for Sustainable HPC |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
power prediction, HPC, deep learning, job scheduling |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
著者所属 |
|
|
|
Fujitsu Laboratories LTD. |
著者所属 |
|
|
|
Fujitsu LTD. |
著者所属 |
|
|
|
Fujitsu Laboratories LTD. |
著者所属 |
|
|
|
Fujitsu Laboratories LTD. |
著者所属 |
|
|
|
Fujitsu Laboratories LTD. |
著者所属 |
|
|
|
Fujitsu Laboratories LTD. |
著者所属 |
|
|
|
Fujitsu LTD. |
著者所属 |
|
|
|
Fujitsu LTD. |
著者所属 |
|
|
|
RIKEN Center for Computational Science |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu Laboratories LTD. |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu LTD. |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu Laboratories LTD. |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu Laboratories LTD. |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu Laboratories LTD. |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu Laboratories LTD. |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu LTD. |
著者所属(英) |
|
|
|
en |
|
|
Fujitsu LTD. |
著者所属(英) |
|
|
|
en |
|
|
RIKEN Center for Computational Science |
著者名 |
Shigeto, Suzuki
Michiko, Hiraoka
Takashi, Shiraishi
Enxhi, Kreshpa
Takuji, Yamamoto
Hiroyuki, Fukuda
Shuji, Matsui
Masahide, Fujisaki
Atsuya, Uno
|
著者名(英) |
Shigeto, Suzuki
Michiko, Hiraoka
Takashi, Shiraishi
Enxhi, Kreshpa
Takuji, Yamamoto
Hiroyuki, Fukuda
Shuji, Matsui
Masahide, Fujisaki
Atsuya, Uno
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Exascale computers consume huge amounts of power and their variation over time makes system energy management important. Because of time lag in cooling-units operation, predictive control is desirable for effective power control. In this work, we report a state-of-the-art power prediction model. Conventional methods with topic model use the power of past job as a prediction based on the similarity of job information. The prediction, however, fails, if there is no correct data before. To resolve this, we developed a recurrent neural network model with variable network size, which detects features of power shape from its power history and enables precise prediction during job execution. By integrating these models into a single algorithm, the optimal model is automatically adopted for prediction according to the job status. We demonstrated high-precision prediction with an average relative error of 5.7% in K computer as compared to that of 20.1% by the conventional method. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) ------------------------------ |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Exascale computers consume huge amounts of power and their variation over time makes system energy management important. Because of time lag in cooling-units operation, predictive control is desirable for effective power control. In this work, we report a state-of-the-art power prediction model. Conventional methods with topic model use the power of past job as a prediction based on the similarity of job information. The prediction, however, fails, if there is no correct data before. To resolve this, we developed a recurrent neural network model with variable network size, which detects features of power shape from its power history and enables precise prediction during job execution. By integrating these models into a single algorithm, the optimal model is automatically adopted for prediction according to the job status. We demonstrated high-precision prediction with an average relative error of 5.7% in K computer as compared to that of 20.1% by the conventional method. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.29(2021) (online) ------------------------------ |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA11833852 |
書誌情報 |
情報処理学会論文誌コンピューティングシステム(ACS)
巻 14,
号 1,
発行日 2021-02-17
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
1882-7829 |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |