ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. コンピューティングシステム(ACS)
  3. Vol.14
  4. No.1

Power Prediction for Sustainable HPC

https://ipsj.ixsq.nii.ac.jp/records/209481
https://ipsj.ixsq.nii.ac.jp/records/209481
11796242-efa9-455b-a873-a888415bb06e
名前 / ファイル ライセンス アクション
IPSJ-TACS1401003.pdf IPSJ-TACS1401003.pdf (2.4 MB)
Copyright (c) 2021 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2021-02-17
タイトル
タイトル Power Prediction for Sustainable HPC
タイトル
言語 en
タイトル Power Prediction for Sustainable HPC
言語
言語 eng
キーワード
主題Scheme Other
主題 power prediction, HPC, deep learning, job scheduling
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Fujitsu Laboratories LTD.
著者所属
Fujitsu LTD.
著者所属
Fujitsu Laboratories LTD.
著者所属
Fujitsu Laboratories LTD.
著者所属
Fujitsu Laboratories LTD.
著者所属
Fujitsu Laboratories LTD.
著者所属
Fujitsu LTD.
著者所属
Fujitsu LTD.
著者所属
RIKEN Center for Computational Science
著者所属(英)
en
Fujitsu Laboratories LTD.
著者所属(英)
en
Fujitsu LTD.
著者所属(英)
en
Fujitsu Laboratories LTD.
著者所属(英)
en
Fujitsu Laboratories LTD.
著者所属(英)
en
Fujitsu Laboratories LTD.
著者所属(英)
en
Fujitsu Laboratories LTD.
著者所属(英)
en
Fujitsu LTD.
著者所属(英)
en
Fujitsu LTD.
著者所属(英)
en
RIKEN Center for Computational Science
著者名 Shigeto, Suzuki

× Shigeto, Suzuki

Shigeto, Suzuki

Search repository
Michiko, Hiraoka

× Michiko, Hiraoka

Michiko, Hiraoka

Search repository
Takashi, Shiraishi

× Takashi, Shiraishi

Takashi, Shiraishi

Search repository
Enxhi, Kreshpa

× Enxhi, Kreshpa

Enxhi, Kreshpa

Search repository
Takuji, Yamamoto

× Takuji, Yamamoto

Takuji, Yamamoto

Search repository
Hiroyuki, Fukuda

× Hiroyuki, Fukuda

Hiroyuki, Fukuda

Search repository
Shuji, Matsui

× Shuji, Matsui

Shuji, Matsui

Search repository
Masahide, Fujisaki

× Masahide, Fujisaki

Masahide, Fujisaki

Search repository
Atsuya, Uno

× Atsuya, Uno

Atsuya, Uno

Search repository
著者名(英) Shigeto, Suzuki

× Shigeto, Suzuki

en Shigeto, Suzuki

Search repository
Michiko, Hiraoka

× Michiko, Hiraoka

en Michiko, Hiraoka

Search repository
Takashi, Shiraishi

× Takashi, Shiraishi

en Takashi, Shiraishi

Search repository
Enxhi, Kreshpa

× Enxhi, Kreshpa

en Enxhi, Kreshpa

Search repository
Takuji, Yamamoto

× Takuji, Yamamoto

en Takuji, Yamamoto

Search repository
Hiroyuki, Fukuda

× Hiroyuki, Fukuda

en Hiroyuki, Fukuda

Search repository
Shuji, Matsui

× Shuji, Matsui

en Shuji, Matsui

Search repository
Masahide, Fujisaki

× Masahide, Fujisaki

en Masahide, Fujisaki

Search repository
Atsuya, Uno

× Atsuya, Uno

en Atsuya, Uno

Search repository
論文抄録
内容記述タイプ Other
内容記述 Exascale computers consume huge amounts of power and their variation over time makes system energy management important. Because of time lag in cooling-units operation, predictive control is desirable for effective power control. In this work, we report a state-of-the-art power prediction model. Conventional methods with topic model use the power of past job as a prediction based on the similarity of job information. The prediction, however, fails, if there is no correct data before. To resolve this, we developed a recurrent neural network model with variable network size, which detects features of power shape from its power history and enables precise prediction during job execution. By integrating these models into a single algorithm, the optimal model is automatically adopted for prediction according to the job status. We demonstrated high-precision prediction with an average relative error of 5.7% in K computer as compared to that of 20.1% by the conventional method.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Exascale computers consume huge amounts of power and their variation over time makes system energy management important. Because of time lag in cooling-units operation, predictive control is desirable for effective power control. In this work, we report a state-of-the-art power prediction model. Conventional methods with topic model use the power of past job as a prediction based on the similarity of job information. The prediction, however, fails, if there is no correct data before. To resolve this, we developed a recurrent neural network model with variable network size, which detects features of power shape from its power history and enables precise prediction during job execution. By integrating these models into a single algorithm, the optimal model is automatically adopted for prediction according to the job status. We demonstrated high-precision prediction with an average relative error of 5.7% in K computer as compared to that of 20.1% by the conventional method.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.29(2021) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11833852
書誌情報 情報処理学会論文誌コンピューティングシステム(ACS)

巻 14, 号 1, 発行日 2021-02-17
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7829
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:30:30.312498
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3