ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ユビキタスコンピューティングシステム(UBI)
  3. 2020
  4. 2020-UBI-068

Preliminary investigation on activity recognition for packaging tasks using motif-guided attention networks

https://ipsj.ixsq.nii.ac.jp/records/208653
https://ipsj.ixsq.nii.ac.jp/records/208653
2db9217c-e0bf-4b14-b9e2-8925362a20e5
名前 / ファイル ライセンス アクション
IPSJ-UBI20068011.pdf IPSJ-UBI20068011.pdf (9.9 MB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2020-12-01
タイトル
タイトル Preliminary investigation on activity recognition for packaging tasks using motif-guided attention networks
タイトル
言語 en
タイトル Preliminary investigation on activity recognition for packaging tasks using motif-guided attention networks
言語
言語 eng
キーワード
主題Scheme Other
主題 行動識別
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Department of Multimedia Engineering, Graduate School of Information Science and Technology, Osaka University
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者所属(英)
en
Corporate Manufacturing Engineering Center, Toshiba Corporation
著者名 Jaime, Morales

× Jaime, Morales

Jaime, Morales

Search repository
Naoya, Yoshimura

× Naoya, Yoshimura

Naoya, Yoshimura

Search repository
Qingxin, Xia

× Qingxin, Xia

Qingxin, Xia

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
Atsushi, Wada

× Atsushi, Wada

Atsushi, Wada

Search repository
Yasuo, Namioka

× Yasuo, Namioka

Yasuo, Namioka

Search repository
著者名(英) Jaime, Morales

× Jaime, Morales

en Jaime, Morales

Search repository
Naoya, Yoshimura

× Naoya, Yoshimura

en Naoya, Yoshimura

Search repository
Qingxin, Xia

× Qingxin, Xia

en Qingxin, Xia

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
Atsushi, Wada

× Atsushi, Wada

en Atsushi, Wada

Search repository
Yasuo, Namioka

× Yasuo, Namioka

en Yasuo, Namioka

Search repository
論文抄録
内容記述タイプ Other
内容記述 This study presents a method for recognizing packaging tasks using wrist-worn accelerometer sensors under real conditions. As the lead times and actions of packaging activities depend on the number of objects to pack along with the size and shape of each object, it is difficult to recognize operations during every period. We propose a segmentation neural network augmented with a multi-head attention mechanism to capture actions found in a specific operation, which can be useful to identify individual operations. To efficiently detect useful actions with limited training data, we propose an attention guiding approach based on existing motif detection algorithms, which find actions (motifs) that frequently appear in a specific operation. We then use the occurrence of these motifs as a target for each attention head, enabling it to increase its ability to recognize similar operations during the packaging process. We evaluate our framework using data obtained in an actual logistics center.
論文抄録(英)
内容記述タイプ Other
内容記述 This study presents a method for recognizing packaging tasks using wrist-worn accelerometer sensors under real conditions. As the lead times and actions of packaging activities depend on the number of objects to pack along with the size and shape of each object, it is difficult to recognize operations during every period. We propose a segmentation neural network augmented with a multi-head attention mechanism to capture actions found in a specific operation, which can be useful to identify individual operations. To efficiently detect useful actions with limited training data, we propose an attention guiding approach based on existing motif detection algorithms, which find actions (motifs) that frequently appear in a specific operation. We then use the occurrence of these motifs as a target for each attention head, enabling it to increase its ability to recognize similar operations during the packaging process. We evaluate our framework using data obtained in an actual logistics center.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11838947
書誌情報 研究報告ユビキタスコンピューティングシステム(UBI)

巻 2020-UBI-68, 号 11, p. 1-8, 発行日 2020-12-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8698
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:46:26.432664
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3