ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. シンポジウム
  2. シンポジウムシリーズ
  3. コンピュータセキュリティシンポジウム
  4. 2020

Gradient Boosting Decision Tree Ensemble Learning for Malware Binary Classification

https://ipsj.ixsq.nii.ac.jp/records/208510
https://ipsj.ixsq.nii.ac.jp/records/208510
99223e75-d815-40f3-8829-a69f3e5ab381
名前 / ファイル ライセンス アクション
IPSJCSS2020082.pdf IPSJCSS2020082.pdf (357.8 kB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type Symposium(1)
公開日 2020-10-19
タイトル
タイトル Gradient Boosting Decision Tree Ensemble Learning for Malware Binary Classification
タイトル
言語 en
タイトル Gradient Boosting Decision Tree Ensemble Learning for Malware Binary Classification
言語
言語 eng
キーワード
主題Scheme Other
主題 malware classification,machine learning,ensemble learning
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
著者所属
Graduate School of Informatics, Nagoya University
著者所属
Information Strategy Office, Nagoya University
著者所属
Information Technology Center, Nagoya University
著者所属
Information Technology Center, Nagoya University
著者所属(英)
en
Graduate School of Informatics, Nagoya University
著者所属(英)
en
Information Strategy Office, Nagoya University
著者所属(英)
en
Information Technology Center, Nagoya University
著者所属(英)
en
Information Technology Center, Nagoya University
著者名 Yun, Gao

× Yun, Gao

Yun, Gao

Search repository
Hirokazu, Hasegawa

× Hirokazu, Hasegawa

Hirokazu, Hasegawa

Search repository
Yukiko, Yamaguchi

× Yukiko, Yamaguchi

Yukiko, Yamaguchi

Search repository
Hajime, Shimada

× Hajime, Shimada

Hajime, Shimada

Search repository
著者名(英) Yun, Gao

× Yun, Gao

en Yun, Gao

Search repository
Hirokazu, Hasegawa

× Hirokazu, Hasegawa

en Hirokazu, Hasegawa

Search repository
Yukiko, Yamaguchi

× Yukiko, Yamaguchi

en Yukiko, Yamaguchi

Search repository
Hajime, Shimada

× Hajime, Shimada

en Hajime, Shimada

Search repository
論文抄録(英)
内容記述タイプ Other
内容記述 The increasing number of malicious software spread through the Internet has become a serious threat. Malware authors use obfuscation and deformation techniques to generate new types of malware in order to evade the detection of traditional detection methods, so that it is widely expected for machine learning methods that classifies malware and cleanware based on the characteristics of the samples. The current research trend is to use machine learning technology, especially decision tree technology, to identify new malicious software quickly and accurately. The purpose of this paper is to investigate malware classification accuracy based on latest decision tree based algorithms including ensemble learning. Therefore, we use the FFRI Dataset 2019 to construct malware detection models from surface analysis logs and PE header dumps. We have successfully developed a malware detection model that is more accurate than previous studies. We have obtained good classification results using only 27 features.
書誌情報 コンピュータセキュリティシンポジウム2020論文集

p. 589-595, 発行日 2020-10-19
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:50:02.120580
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3