@techreport{oai:ipsj.ixsq.nii.ac.jp:00207911, author = {道免, 陽平 and 右田, 剛史 and 高橋, 規一 and Yohei, Domen and Tsuyoshi, Migita and Norikazu, Takahashi}, issue = {9}, month = {Nov}, note = {非負値行列因子分解 (NMF: Nonnegative Matrix Factorization) は,与えられた非負値行列を二つの低ランク非負値行列の積で近似する多変量解析の手法であり,信号処理,テキスト分類,ネットワーク分析,推薦システムなどに広く利用されている.本報告では,与えられた非負値行列が多数のブロックに分割され,各ブロックが一つのエージェントに割り当てられている状況を想定し,多数のエージェントが分散的かつ協調的に NMF を行うためのアルゴリズムを提案する.提案アルゴリズムは様々な乗法型更新とある合意アルゴリズムを組み合わせたものであり,単一エージェントで乗法型更新を実行するのと同じ結果が得られる点に特徴がある., Nonnegative matrix factorization (NMF) is a multivariate method that approximates a given nonnegative matrix by the product of two low-rank nonnegative matrices, and has been widely used in signal processing, text classification, network analysis, and recommendation systems. In this report, assuming that a given nonnegative matrix is divided into a large number of blocks and each block is assigned to a single agent, we propose an algorithm for multiple agents to perform NMF in a decentralized and cooperative manner. The proposed algorithm, which is a combination of various multiplicative updates and a certain consensus algorithm, gives the same results as performing multiplicative updates with a single agent.}, title = {乗法型更新と合意形成に基づく非負値行列因子分解の分散計算アルゴリズム}, year = {2020} }