Item type |
Trans(1) |
公開日 |
2020-10-06 |
タイトル |
|
|
タイトル |
データ同化による浸水位推定手法の提案と都市型水害での精度検証 |
タイトル |
|
|
言語 |
en |
|
タイトル |
A Proposal of Data Assimilation Approach for Flood Level Estimation and Evaluation with Urban Flood Disasters |
言語 |
|
|
言語 |
jpn |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
[研究論文] 水害被害予測,状態空間モデル,時空間解析 |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
著者所属 |
|
|
|
京都大学防災研究所 |
著者所属 |
|
|
|
統計数理研究所 |
著者所属 |
|
|
|
名古屋大学減災連携研究センター |
著者所属 |
|
|
|
名古屋大学減災連携研究センター |
著者所属 |
|
|
|
北陸先端科学技術大学院大学 |
著者所属(英) |
|
|
|
en |
|
|
Disaster Prevention Research Institute, Kyoto University |
著者所属(英) |
|
|
|
en |
|
|
The Institute of Statistical Mathematics |
著者所属(英) |
|
|
|
en |
|
|
Disaster Mitigation Research Center, Nagoya University |
著者所属(英) |
|
|
|
en |
|
|
Disaster Mitigation Research Center, Nagoya University |
著者所属(英) |
|
|
|
en |
|
|
Japan Advanced Institute of Science and Technology |
著者名 |
廣井, 慧
村上, 大輔
倉田, 和己
田代, 喬
篠田, 陽一
|
著者名(英) |
Kei, Hiroi
Daisuke, Murakami
Kazumi, Kurata
Takashi, Tashiro
Yoichi, Shinoda
|
論文抄録 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
本論文では,観測機器の設置されていない地点での浸水位の時系列変化を実時間で把握,予測するための,状態空間モデルを用いたデータ同化による浸水位推定手法を提案する.提案するデータ同化手法は,水位観測と物理モデルから導出した氾濫解析シミュレーションを統合し,水位観測の行われていない水路において内水氾濫とその浸水拡大過程を推定する手法である.はじめに,数値解析シミュレーションを用いて様々な降水量のパターンでの浸水予測を行い,高分解能(5~10メートル)の精緻な地理空間について,浸水深を表す状態空間の時系列データのデータセットを事前に構築する.実際の予測では,各格子に対する氾濫水の流入量・流出量を,状態空間モデルの変数として,多変量解析を行う.精度評価として愛知県津島市で発生した内水氾濫での観測データを利用する.土木研究所の開発した氾濫解析シミュレーションNILIM2.0を用いて,既往水害で観測された降水量,河川水位などから数値解析シミュレーションを行い,対象地区の5~10メートル格子ごとの浸水過程について5~10分ごとの時系列データを作成した.最大0.60メートルの浸水が発生した愛知県津島市の水路4地点での観測データに本手法を適用したところ,数値解析シミュレーションの浸水位では,実測値と比べ最大0.60メートルの誤差が生じていたが,提案する状態空間モデルを用いた予測により0.09メートル以内に改善した. |
論文抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
This paper proposes a method for estimating flood levels by data assimilation using a state space model to determine the spatial-temporal flood expansion process. The method incorporates flood simulation values to analyze the causal relationship with observation data of river water levels. First, we simulate flood scenarios using a flood simulator with various precipitation patterns to construct time series datasets with high spatial resolutions (5-10m). Then, after estimating the water level in the channels using an auxiliary particle filter, we analyze the inflow and the outflow of flood water for each grid element by improving the state space model to add spatial variables. We evaluated the performance of the proposed method using observation data in Aichi Prefecture, Japan. While the conventional method had an error of approximately 60cm compared to the observation value, our estimation method using the proposed state space model showed a significant improvement, with an error of less than 9cm. |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA12628043 |
書誌情報 |
情報処理学会論文誌コンシューマ・デバイス&システム(CDS)
巻 10,
号 3,
p. 55-64,
発行日 2020-10-06
|
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2186-5728 |
出版者 |
|
|
言語 |
ja |
|
出版者 |
情報処理学会 |