ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.61
  3. No.9

Identification of Cybersecurity Specific Content Using Different Language Models

https://ipsj.ixsq.nii.ac.jp/records/206914
https://ipsj.ixsq.nii.ac.jp/records/206914
100532fa-5218-4da9-b8f8-779f4b9c773e
名前 / ファイル ライセンス アクション
IPSJ-JNL6109034.pdf IPSJ-JNL6109034.pdf (462.4 kB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2020-09-15
タイトル
タイトル Identification of Cybersecurity Specific Content Using Different Language Models
タイトル
言語 en
タイトル Identification of Cybersecurity Specific Content Using Different Language Models
言語
言語 eng
キーワード
主題Scheme Other
主題 [特集:“Applications and the Internet” in Conjunction with Main Topics of COMPSAC2019] cyber threat, NLP, Text-Classification
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Nagoya University, Graduate School of Informatics
著者所属
Nagoya University, Information Security Office
著者所属
Nagoya University, Information Technology Center
著者所属
Nagoya University, Information Technology Center
著者所属
ExaWizards Inc.
著者所属(英)
en
Nagoya University, Graduate School of Informatics
著者所属(英)
en
Nagoya University, Information Security Office
著者所属(英)
en
Nagoya University, Information Technology Center
著者所属(英)
en
Nagoya University, Information Technology Center
著者所属(英)
en
ExaWizards Inc.
著者名 Otgonpurev, Mendsaikhan

× Otgonpurev, Mendsaikhan

Otgonpurev, Mendsaikhan

Search repository
Hirokazu, Hasegawa

× Hirokazu, Hasegawa

Hirokazu, Hasegawa

Search repository
Yukiko, Yamaguchi

× Yukiko, Yamaguchi

Yukiko, Yamaguchi

Search repository
Hajime, Shimada

× Hajime, Shimada

Hajime, Shimada

Search repository
Enkhbold, Bataa

× Enkhbold, Bataa

Enkhbold, Bataa

Search repository
著者名(英) Otgonpurev, Mendsaikhan

× Otgonpurev, Mendsaikhan

en Otgonpurev, Mendsaikhan

Search repository
Hirokazu, Hasegawa

× Hirokazu, Hasegawa

en Hirokazu, Hasegawa

Search repository
Yukiko, Yamaguchi

× Yukiko, Yamaguchi

en Yukiko, Yamaguchi

Search repository
Hajime, Shimada

× Hajime, Shimada

en Hajime, Shimada

Search repository
Enkhbold, Bataa

× Enkhbold, Bataa

en Enkhbold, Bataa

Search repository
論文抄録
内容記述タイプ Other
内容記述 Given the sheer amount of digital texts publicly available on the Internet, it becomes more challenging for security analysts to identify cyber threat related content. In this research, we proposed to build an autonomous system to identify cyber threat information from publicly available information sources. We examined different language models to utilize as a cybersecurity-specific filter for the proposed system. Using the domain-specific training data, we trained Doc2Vec and BERT models and compared their performance. According to our evaluation, the BERT-based Natural Language Filter is able to identify and classify cybersecurity-specific natural language text with 90% accuracy.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.28(2020) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.28.623
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 Given the sheer amount of digital texts publicly available on the Internet, it becomes more challenging for security analysts to identify cyber threat related content. In this research, we proposed to build an autonomous system to identify cyber threat information from publicly available information sources. We examined different language models to utilize as a cybersecurity-specific filter for the proposed system. Using the domain-specific training data, we trained Doc2Vec and BERT models and compared their performance. According to our evaluation, the BERT-based Natural Language Filter is able to identify and classify cybersecurity-specific natural language text with 90% accuracy.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.28(2020) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.28.623
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 61, 号 9, 発行日 2020-09-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 19:17:07.266402
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3