ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. モバイルコンピューティングと新社会システム(MBL)
  3. 2020
  4. 2020-MBL-094

Preliminary Investigation of Machine Learning-based Subcarrier Selection for AoA Estimation Using Wi-Fi CSI

https://ipsj.ixsq.nii.ac.jp/records/203577
https://ipsj.ixsq.nii.ac.jp/records/203577
599a8210-49e1-41b4-8ab6-01f1a8d4e306
名前 / ファイル ライセンス アクション
IPSJ-MBL20094055.pdf IPSJ-MBL20094055.pdf (1.9 MB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2020-02-24
タイトル
タイトル Preliminary Investigation of Machine Learning-based Subcarrier Selection for AoA Estimation Using Wi-Fi CSI
タイトル
言語 en
タイトル Preliminary Investigation of Machine Learning-based Subcarrier Selection for AoA Estimation Using Wi-Fi CSI
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Information Science and Technologies, Osaka University
著者所属
Graduate School of Information Science and Technologies, Osaka University
著者所属
Graduate School of Information Science and Technologies, Osaka University
著者所属
Communication Science Laboratories, NTT
著者所属
Access Network Service Systems Laboratories, NTT
著者所属
Access Network Service Systems Laboratories, NTT
著者所属(英)
en
Graduate School of Information Science and Technologies, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technologies, Osaka University
著者所属(英)
en
Graduate School of Information Science and Technologies, Osaka University
著者所属(英)
en
Communication Science Laboratories, NTT
著者所属(英)
en
Access Network Service Systems Laboratories, NTT
著者所属(英)
en
Access Network Service Systems Laboratories, NTT
著者名 Zesheng, Cai

× Zesheng, Cai

Zesheng, Cai

Search repository
Takuya, Maekawa

× Takuya, Maekawa

Takuya, Maekawa

Search repository
Takahiro, Hara

× Takahiro, Hara

Takahiro, Hara

Search repository
Kazuya, Ohara

× Kazuya, Ohara

Kazuya, Ohara

Search repository
Tomoki, Murakami

× Tomoki, Murakami

Tomoki, Murakami

Search repository
Hirantha, Abeysekera

× Hirantha, Abeysekera

Hirantha, Abeysekera

Search repository
著者名(英) Zesheng, Cai

× Zesheng, Cai

en Zesheng, Cai

Search repository
Takuya, Maekawa

× Takuya, Maekawa

en Takuya, Maekawa

Search repository
Takahiro, Hara

× Takahiro, Hara

en Takahiro, Hara

Search repository
Kazuya, Ohara

× Kazuya, Ohara

en Kazuya, Ohara

Search repository
Tomoki, Murakami

× Tomoki, Murakami

en Tomoki, Murakami

Search repository
Hirantha, Abeysekera

× Hirantha, Abeysekera

en Hirantha, Abeysekera

Search repository
論文抄録
内容記述タイプ Other
内容記述 With the rapid development of wireless sensing technologies, context awareness based on Wi-Fi channel state information (CSI) has been actively studied. Specifically, methods for estimating the angle of arrival (AoA) extracted from CSI attract researchers' attention for its ability to reveal the signal paths from a transmitter to receiver. However, different subcarriers in CSI have different sensitivities and thus it is essential to exploit suitable subcarriers for AoA estimation. Traditional approaches are limited to the number of CSI packets and specialized capture devices, decreasing the opportunity for deployment. In this work, we propose to select the proper subcarriers even with one single packet for AoA estimation by utilizing machine learning without specialized devices. Our system exploits the fine-grained compressed channel state information with common IEEE 802.11ac devices and thus has the potential to be widely deployed. Instead of selecting antenna pairs from CSI measurements, which has limited combinations due to the number of receiver antennas, the developed algorithm studies the properties of subcarriers within all antenna pairs and tries to find the subcarriers with small AoA errors by using classification and regression method, e.g., Random Forest and Support Vector Regression (SVR) in our system. Our extensive experiments demonstrate that our system can accurately select the proper subcarriers with high environmental robustness for AoA estimation using Wi-Fi CSI.
論文抄録(英)
内容記述タイプ Other
内容記述 With the rapid development of wireless sensing technologies, context awareness based on Wi-Fi channel state information (CSI) has been actively studied. Specifically, methods for estimating the angle of arrival (AoA) extracted from CSI attract researchers' attention for its ability to reveal the signal paths from a transmitter to receiver. However, different subcarriers in CSI have different sensitivities and thus it is essential to exploit suitable subcarriers for AoA estimation. Traditional approaches are limited to the number of CSI packets and specialized capture devices, decreasing the opportunity for deployment. In this work, we propose to select the proper subcarriers even with one single packet for AoA estimation by utilizing machine learning without specialized devices. Our system exploits the fine-grained compressed channel state information with common IEEE 802.11ac devices and thus has the potential to be widely deployed. Instead of selecting antenna pairs from CSI measurements, which has limited combinations due to the number of receiver antennas, the developed algorithm studies the properties of subcarriers within all antenna pairs and tries to find the subcarriers with small AoA errors by using classification and regression method, e.g., Random Forest and Support Vector Regression (SVR) in our system. Our extensive experiments demonstrate that our system can accurately select the proper subcarriers with high environmental robustness for AoA estimation using Wi-Fi CSI.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11851388
書誌情報 研究報告モバイルコンピューティングとパーベイシブシステム(MBL)

巻 2020-MBL-94, 号 55, p. 1-8, 発行日 2020-02-24
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8817
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 20:29:52.894379
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3