ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. データベース(TOD)[電子情報通信学会データ工学研究専門委員会共同編集]
  3. Vol.18
  4. No.4

Active Utterance Collection for Efficient NLU Model Training in Dialog Systems

https://ipsj.ixsq.nii.ac.jp/records/2005280
https://ipsj.ixsq.nii.ac.jp/records/2005280
a67a2748-a692-4819-8f01-1ae78c981d59
名前 / ファイル ライセンス アクション
IPSJ-TOD1804010.pdf IPSJ-TOD1804010.pdf (2.7 MB)
 2027年10月30日からダウンロード可能です。
Copyright (c) 2025 by the Information Processing Society of Japan
非会員:¥0, IPSJ:学会員:¥0, DBS:会員:¥0, IFAT:会員:¥0, DLIB:会員:¥0
Item type Trans(1)
公開日 2025-10-30
タイトル
言語 ja
タイトル Active Utterance Collection for Efficient NLU Model Training in Dialog Systems
タイトル
言語 en
タイトル Investigating Information Needs During Spreadsheet Data Analysis
言語
言語 eng
キーワード
主題Scheme Other
主題 [研究論文] natural language understanding, data collection, dialog systems, synthetic data generation
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
University of Tsukuba
著者所属
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者所属(英)
en
University of Tsukuba
著者名 Rui,Yang

× Rui,Yang

Rui,Yang

Search repository
Kei,Wakabayashi

× Kei,Wakabayashi

Kei,Wakabayashi

Search repository
著者名(英) Rui Yang

× Rui Yang

en Rui Yang

Search repository
Kei Wakabayashi

× Kei Wakabayashi

en Kei Wakabayashi

Search repository
論文抄録
内容記述タイプ Other
内容記述 The development of natural language understanding (NLU) models for dialogue systems necessitates the collection of a large volume of user utterances as training data, which requires significant human effort. To improve the efficiency of data collection, we develop a novel active utterance collection framework that leverages dialog scenes, which are the states of the dialog manager in the system, to actively control the data collection process. The key idea of the proposed method is to identify dialog scenes where the current NLU model performs worse and collect more data instances in those scenes to efficiently improve the model's performance. To estimate the performance of the NLU model on each dialog scene, we propose two strategies to generate validation data, including a method that uses large language models (LLMs). Empirical evaluations on the Schema-Guided Dialog dataset indicate that the proposed method can improve the efficiency of data collection in scenarios where a substantial labeled validation dataset is available. However, its efficacy diminishes in settings with practical constraints that limit the availability of validation data. These findings underscore the potential of the proposed approach, which opens new avenues for future research in practical methods for enhancing the efficiency of data collection in dialog systems development.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.33(2025) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 The development of natural language understanding (NLU) models for dialogue systems necessitates the collection of a large volume of user utterances as training data, which requires significant human effort. To improve the efficiency of data collection, we develop a novel active utterance collection framework that leverages dialog scenes, which are the states of the dialog manager in the system, to actively control the data collection process. The key idea of the proposed method is to identify dialog scenes where the current NLU model performs worse and collect more data instances in those scenes to efficiently improve the model's performance. To estimate the performance of the NLU model on each dialog scene, we propose two strategies to generate validation data, including a method that uses large language models (LLMs). Empirical evaluations on the Schema-Guided Dialog dataset indicate that the proposed method can improve the efficiency of data collection in scenarios where a substantial labeled validation dataset is available. However, its efficacy diminishes in settings with practical constraints that limit the availability of validation data. These findings underscore the potential of the proposed approach, which opens new avenues for future research in practical methods for enhancing the efficiency of data collection in dialog systems development.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.33(2025) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464847
書誌情報 情報処理学会論文誌データベース(TOD)

巻 18, 号 4, 発行日 2025-10-30
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7799
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-10-24 01:59:03.314465
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3