WEKO3
アイテム
Improving Behavior-aware Driving Video Captioning through Better Use of In-vehicle Sensors and References
https://ipsj.ixsq.nii.ac.jp/records/2001757
https://ipsj.ixsq.nii.ac.jp/records/200175769cf758d-93df-431e-b23c-aeb004744a35
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]()
2027年4月15日からダウンロード可能です。
|
Copyright (c) 2025 by the Information Processing Society of Japan
|
|
非会員:¥0, IPSJ:学会員:¥0, 論文誌:会員:¥0, DLIB:会員:¥0 |
Item type | Journal(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2025-04-15 | |||||||||||
タイトル | ||||||||||||
言語 | ja | |||||||||||
タイトル | Improving Behavior-aware Driving Video Captioning through Better Use of In-vehicle Sensors and References | |||||||||||
タイトル | ||||||||||||
言語 | en | |||||||||||
タイトル | Improving Behavior-aware Driving Video Captioning through Better Use of In-vehicle Sensors and References | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
キーワード | ||||||||||||
主題Scheme | Other | |||||||||||
主題 | [一般論文] driving video captioning, behavior-aware captioning, multimodal fusion | |||||||||||
資源タイプ | ||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||||
資源タイプ | journal article | |||||||||||
著者所属 | ||||||||||||
Bosch Corporation Headquarters | ||||||||||||
著者所属 | ||||||||||||
National Institute of Informatics | ||||||||||||
著者所属 | ||||||||||||
Nagoya University | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Bosch Corporation Headquarters | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
National Institute of Informatics | ||||||||||||
著者所属(英) | ||||||||||||
en | ||||||||||||
Nagoya University | ||||||||||||
著者名 |
Hongkuan,Zhang
× Hongkuan,Zhang
× Koichi,Takeda
× Ryohei,Sasano
|
|||||||||||
著者名(英) |
Hongkuan Zhang
× Hongkuan Zhang
× Koichi Takeda
× Ryohei Sasano
|
|||||||||||
論文抄録 | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | Driving video captioning aims to automatically generate descriptions for videos from driving recorders. Driving video captions are generally required to describe first-person driving behaviors which implicitly characterize the driving videos but are challenging to anchor to concrete visual evidence. To generate captions with better driving behavior descriptions, existing work has introduced behavior-related in-vehicle sensors into a captioning model for behavior-aware captioning. However, a better method for fusing the sensor modality with visual modalities has not been fully investigated, and the accuracy and informativeness of generated behavior-related descriptions remain unsatisfactory. In this paper, we compare three modality fusion methods by using a Transformer-based video captioning model and propose two training strategies to improve both the accuracy and the informativeness of generated behavior descriptions: 1) joint training the captioning model with multilabel behavior classification by explicitly using annotated behavior tags; and 2) weighted training by assigning weights to reference captions (references) according to the informativeness of behavior descriptions in references. Experiments on a Japanese driving video captioning dataset, City Traffic (CT), show the efficacy and positive interaction of the proposed training strategies. Moreover, larger improvements on out-of-distribution data demonstrate the improved generalization ability. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.33(2025) (online) DOI http://dx.doi.org/10.2197/ipsjjip.33.284 ------------------------------ |
|||||||||||
論文抄録(英) | ||||||||||||
内容記述タイプ | Other | |||||||||||
内容記述 | Driving video captioning aims to automatically generate descriptions for videos from driving recorders. Driving video captions are generally required to describe first-person driving behaviors which implicitly characterize the driving videos but are challenging to anchor to concrete visual evidence. To generate captions with better driving behavior descriptions, existing work has introduced behavior-related in-vehicle sensors into a captioning model for behavior-aware captioning. However, a better method for fusing the sensor modality with visual modalities has not been fully investigated, and the accuracy and informativeness of generated behavior-related descriptions remain unsatisfactory. In this paper, we compare three modality fusion methods by using a Transformer-based video captioning model and propose two training strategies to improve both the accuracy and the informativeness of generated behavior descriptions: 1) joint training the captioning model with multilabel behavior classification by explicitly using annotated behavior tags; and 2) weighted training by assigning weights to reference captions (references) according to the informativeness of behavior descriptions in references. Experiments on a Japanese driving video captioning dataset, City Traffic (CT), show the efficacy and positive interaction of the proposed training strategies. Moreover, larger improvements on out-of-distribution data demonstrate the improved generalization ability. ------------------------------ This is a preprint of an article intended for publication Journal of Information Processing(JIP). This preprint should not be cited. This article should be cited as: Journal of Information Processing Vol.33(2025) (online) DOI http://dx.doi.org/10.2197/ipsjjip.33.284 ------------------------------ |
|||||||||||
書誌レコードID | ||||||||||||
収録物識別子タイプ | NCID | |||||||||||
収録物識別子 | AN00116647 | |||||||||||
書誌情報 |
情報処理学会論文誌 巻 66, 号 4, 発行日 2025-04-15 |
|||||||||||
ISSN | ||||||||||||
収録物識別子タイプ | ISSN | |||||||||||
収録物識別子 | 1882-7764 | |||||||||||
公開者 | ||||||||||||
言語 | ja | |||||||||||
出版者 | 情報処理学会 |