@article{oai:ipsj.ixsq.nii.ac.jp:02000549, author = {宮里,龍平 and 西野,哲朗 and 原田,慧 and Ryuhei Miyazato and Tetsuro Nishino and Kei Harada}, issue = {1}, journal = {情報処理学会論文誌数理モデル化と応用(TOM)}, month = {Feb}, note = {推薦システムは,利用者にとって価値があるアイテムを特定することで,利用者のアイテム探しを補助するシステムである.大学図書館においても,貸出履歴や図書の内容情報を使って利用者に図書を推薦する手法が提案されている.しかし,異なる学習状況や目的を持って図書を探しに訪れる利用者を考慮した図書推薦手法は実現されていない.本研究では,授業と関連した図書に,授業科目や用途,難易度,その他図書の特徴を表すラベルを手作業で付加した蔵書DBを構築し,利用者の希望を選択式で受付けることで,利用者の目的と状況に合った図書を推薦することを可能にした.この手法を実装し,既存システムOPACを比較対象とした被験者実験を行った.その結果,「借りてみたい図書を見つけることができる」,「要望が推薦結果によく反映されている」といった観点において,提案手法がOPACを有意に上回ることが示された., Recommendation system is designed to assist users in finding their desired items by identifying users' preference. In university libraries, recommendation methods have been proposed that use borrowing histories and book content information to recommend books to users. However, existing approaches do not adequately consider users' diverse and dynamic learning situations and objectives when recommending books. The purpose of this study is to propose a recommendation method for recommending class-related books in university libraries. In this study, we created a library database that each book is manually labeled with information on relevant course subjects, intended usage, difficulty level, and other characteristics. Allowing users to select their preferences through a simple choice-based interface, we elicit users' preference and recommend books with considering their purpose and current learning needs. We implemented this method and conducted a comparative experiment with OPAC. The results showed that our proposed system significantly outperformed OPAC in terms of the following aspects: whether you could find desired books and you felt that the recommendations reflected your preferences.}, pages = {1--9}, title = {大学図書館利用者の学習状況を考慮した授業関連の図書推薦手法の提案}, volume = {18}, year = {2025} }