ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 数理モデル化と問題解決(MPS)
  3. 2019
  4. 2019-MPS-124

Branching Deep Q-Network Agent for Joint Replenishment Policy

https://ipsj.ixsq.nii.ac.jp/records/198415
https://ipsj.ixsq.nii.ac.jp/records/198415
9f3c0a72-4719-49b3-ba35-9d9b71168fac
名前 / ファイル ライセンス アクション
IPSJ-MPS19124002.pdf IPSJ-MPS19124002.pdf (662.6 kB)
Copyright (c) 2019 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2019-07-22
タイトル
タイトル Branching Deep Q-Network Agent for Joint Replenishment Policy
タイトル
言語 en
タイトル Branching Deep Q-Network Agent for Joint Replenishment Policy
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Engineering University of Tokyo
著者所属
Graduate School of Engineering University of Tokyo
著者所属
Graduate School of Engineering University of Tokyo
著者所属(英)
en
Graduate School of Engineering University of Tokyo
著者所属(英)
en
Graduate School of Engineering University of Tokyo
著者所属(英)
en
Graduate School of Engineering University of Tokyo
著者名 Hiroshi, Suetsugu

× Hiroshi, Suetsugu

Hiroshi, Suetsugu

Search repository
Yoshiaki, Narusue

× Yoshiaki, Narusue

Yoshiaki, Narusue

Search repository
Hiroyuki, Morikawa

× Hiroyuki, Morikawa

Hiroyuki, Morikawa

Search repository
著者名(英) Hiroshi, Suetsugu

× Hiroshi, Suetsugu

en Hiroshi, Suetsugu

Search repository
Yoshiaki, Narusue

× Yoshiaki, Narusue

en Yoshiaki, Narusue

Search repository
Hiroyuki, Morikawa

× Hiroyuki, Morikawa

en Hiroyuki, Morikawa

Search repository
論文抄録
内容記述タイプ Other
内容記述 This study proposes a reinforcement learning approach to find the near-optimal dynamic ordering policy for a multi-product inventory system with non-stationary demands. The distinguishing feature of multi-product inventory systems is the need to take into account the coordination among products with the aim of total cost reduction. The Markov decision process formulation has been used to obtain an optimal policy. However, the curse of dimensionality has made it intractable for a large number of products. For more products, heuristic algorithms have been proposed on the assumption of a stationary demand in literature. In this study, we propose an extended Q-learning agent with function approximation, called the branching deep Q-network (DQN) with reward allocation based on the branching double DQN. Our numerical experiments show that the proposed agent learns the coordinated order policy without any knowledge of other products' decisions and outperforms non-coordinated forecast-based economic order policy.
論文抄録(英)
内容記述タイプ Other
内容記述 This study proposes a reinforcement learning approach to find the near-optimal dynamic ordering policy for a multi-product inventory system with non-stationary demands. The distinguishing feature of multi-product inventory systems is the need to take into account the coordination among products with the aim of total cost reduction. The Markov decision process formulation has been used to obtain an optimal policy. However, the curse of dimensionality has made it intractable for a large number of products. For more products, heuristic algorithms have been proposed on the assumption of a stationary demand in literature. In this study, we propose an extended Q-learning agent with function approximation, called the branching deep Q-network (DQN) with reward allocation based on the branching double DQN. Our numerical experiments show that the proposed agent learns the coordinated order policy without any knowledge of other products' decisions and outperforms non-coordinated forecast-based economic order policy.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10505667
書誌情報 研究報告数理モデル化と問題解決(MPS)

巻 2019-MPS-124, 号 2, p. 1-4, 発行日 2019-07-22
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8833
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 22:02:13.023898
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3