ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. データベース(TOD)[電子情報通信学会データ工学研究専門委員会共同編集]
  3. Vol.12
  4. No.3

Stance Detection Attending External Knowledge from Wikipedia

https://ipsj.ixsq.nii.ac.jp/records/198183
https://ipsj.ixsq.nii.ac.jp/records/198183
9b3313c8-2a3c-4319-9ef5-d0c237293ac7
名前 / ファイル ライセンス アクション
IPSJ-TOD1203003.pdf IPSJ-TOD1203003.pdf (1.3 MB)
Copyright (c) 2019 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2019-07-17
タイトル
タイトル Stance Detection Attending External Knowledge from Wikipedia
タイトル
言語 en
タイトル Stance Detection Attending External Knowledge from Wikipedia
言語
言語 eng
キーワード
主題Scheme Other
主題 [研究論文] natural language processing, opinion mining, stance detection, world knowledge
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
RIKEN Center for Advanced Intelligence Project/Tohoku University
著者所属
Recruit Technologies Co., Ltd.
著者所属
Tokyo Institute of Technology
著者所属
RIKEN Center for Advanced Intelligence Project/Tohoku University
著者所属(英)
en
RIKEN Center for Advanced Intelligence Project / Tohoku University
著者所属(英)
en
Recruit Technologies Co., Ltd.
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
RIKEN Center for Advanced Intelligence Project / Tohoku University
著者名 Kazuaki, Hanawa

× Kazuaki, Hanawa

Kazuaki, Hanawa

Search repository
Akira, Sasaki

× Akira, Sasaki

Akira, Sasaki

Search repository
Naoaki, Okazaki

× Naoaki, Okazaki

Naoaki, Okazaki

Search repository
Kentaro, Inui

× Kentaro, Inui

Kentaro, Inui

Search repository
著者名(英) Kazuaki, Hanawa

× Kazuaki, Hanawa

en Kazuaki, Hanawa

Search repository
Akira, Sasaki

× Akira, Sasaki

en Akira, Sasaki

Search repository
Naoaki, Okazaki

× Naoaki, Okazaki

en Naoaki, Okazaki

Search repository
Kentaro, Inui

× Kentaro, Inui

en Kentaro, Inui

Search repository
論文抄録
内容記述タイプ Other
内容記述 This paper presents a novel approach to stance detection for unseen topics that takes advantage of external knowledge about the topics. We build a new stance detection dataset consisting of 6,701 tweets on seven topics with associated Wikipedia articles. An analysis of this dataset confirms the necessity of external knowledge for this task. This paper also presents a method of extracting related concepts and events from Wikipedia articles. To incorporate this extracted knowledge into stance detection, we propose a novel neural network model that can attend to such related concepts and events when encoding the given text using bi-directional long short-term memories. Our experimental results demonstrate that the proposed method, using knowledge extracted from Wikipedia, can improve stance detection performance.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.27(2019) (online)
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 This paper presents a novel approach to stance detection for unseen topics that takes advantage of external knowledge about the topics. We build a new stance detection dataset consisting of 6,701 tweets on seven topics with associated Wikipedia articles. An analysis of this dataset confirms the necessity of external knowledge for this task. This paper also presents a method of extracting related concepts and events from Wikipedia articles. To incorporate this extracted knowledge into stance detection, we propose a novel neural network model that can attend to such related concepts and events when encoding the given text using bi-directional long short-term memories. Our experimental results demonstrate that the proposed method, using knowledge extracted from Wikipedia, can improve stance detection performance.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.27(2019) (online)
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464847
書誌情報 情報処理学会論文誌データベース(TOD)

巻 12, 号 3, 発行日 2019-07-17
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7799
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 22:04:48.422971
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3