{"updated":"2025-01-19T23:45:51.852310+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00193954","sets":["1164:2592:9674:9675"]},"path":["9675"],"owner":"44499","recid":"193954","title":["7次対称方陣の数え上げ"],"pubdate":{"attribute_name":"公開日","attribute_value":"2019-01-22"},"_buckets":{"deposit":"5ec3ee79-dd88-487e-b814-f57985dcfcba"},"_deposit":{"id":"193954","pid":{"type":"depid","value":"193954","revision_id":0},"owners":[44499],"status":"published","created_by":44499},"item_title":"7次対称方陣の数え上げ","author_link":["455623","455622"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"7次対称方陣の数え上げ"}]},"item_type_id":"4","publish_date":"2019-01-22","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"京都大学工学部情報学科"},{"subitem_text_value":"京都大学大学院情報学研究科"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/193954/files/IPSJ-AL19171007.pdf","label":"IPSJ-AL19171007.pdf"},"date":[{"dateType":"Available","dateValue":"2021-01-22"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-AL19171007.pdf","filesize":[{"value":"919.7 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"9"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"e713b2fa-fc2a-4e10-ba0a-40cf9dda55cf","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2019 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"加藤, 剛"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"湊, 真一"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN1009593X","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8566","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"7 次対称方陣とは,中心に関して対称な位置にある 2 マスの和が常に一定であるような 7 × 7 の魔方陣である.現在知られている 6 次の半魔方陣 (斜めの和の条件を持たない魔方陣) の数え上げの方法を参考にして,方陣を 2 つに分割して数え上げる手法を用いて計算した結果,7 次対称方陣の解の総数は,回転や鏡像で同じ形になるものを除いて,1,125,154,039,419,854,784 通りであることを初めて明らかにした.本稿ではその計算方法について述べる.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"7","bibliographic_titles":[{"bibliographic_title":"研究報告アルゴリズム(AL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2019-01-22","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"7","bibliographicVolumeNumber":"2019-AL-171"}]},"relation_version_is_last":true,"weko_creator_id":"44499"},"created":"2025-01-19T00:59:05.270530+00:00","id":193954,"links":{}}