ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. コンピュータビジョンとイメージメディア(CVIM)
  3. 2018
  4. 2018-CVIM-213

Computer-Aided Diagnosis of Liver Cancers Using Deep Learning with Fine-tuning

https://ipsj.ixsq.nii.ac.jp/records/191368
https://ipsj.ixsq.nii.ac.jp/records/191368
216676df-39d0-4fe6-b345-040f572107e0
名前 / ファイル ライセンス アクション
IPSJ-CVIM18213023.pdf IPSJ-CVIM18213023.pdf (310.6 kB)
Copyright (c) 2018 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG.
CVIM:会員:¥0, DLIB:会員:¥0
Item type SIG Technical Reports(1)
公開日 2018-09-13
タイトル
タイトル Computer-Aided Diagnosis of Liver Cancers Using Deep Learning with Fine-tuning
タイトル
言語 en
タイトル Computer-Aided Diagnosis of Liver Cancers Using Deep Learning with Fine-tuning
言語
言語 eng
キーワード
主題Scheme Other
主題 ディスカッションセッション4
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Ritsumeikan University
著者所属
Zhejiang University
著者所属
Zhejiang University
著者所属
Zhejiang University
著者所属
Zhejiang University
著者所属
Zhejiang University
著者所属
Ritsumeikan University
著者所属
Ritsumeikan University
著者所属
Ritsumeikan University
著者所属(英)
en
Ritsumeikan University
著者所属(英)
en
Zhejiang University
著者所属(英)
en
Zhejiang University
著者所属(英)
en
Zhejiang University
著者所属(英)
en
Zhejiang University
著者所属(英)
en
Zhejiang University
著者所属(英)
en
Ritsumeikan University
著者所属(英)
en
Ritsumeikan University
著者所属(英)
en
Ritsumeikan University
著者名 Weibin, Wang

× Weibin, Wang

Weibin, Wang

Search repository
Dong, Liang

× Dong, Liang

Dong, Liang

Search repository
Lanfen, Lin

× Lanfen, Lin

Lanfen, Lin

Search repository
Hongjie, Hu

× Hongjie, Hu

Hongjie, Hu

Search repository
Qiaowei, Zhang

× Qiaowei, Zhang

Qiaowei, Zhang

Search repository
Qingqing, Chen

× Qingqing, Chen

Qingqing, Chen

Search repository
Yutaro, Iwamoto

× Yutaro, Iwamoto

Yutaro, Iwamoto

Search repository
Xianhua, Han

× Xianhua, Han

Xianhua, Han

Search repository
Yen-Wei, Chen

× Yen-Wei, Chen

Yen-Wei, Chen

Search repository
著者名(英) Weibin, Wang

× Weibin, Wang

en Weibin, Wang

Search repository
Dong, Liang

× Dong, Liang

en Dong, Liang

Search repository
Lanfen, Lin

× Lanfen, Lin

en Lanfen, Lin

Search repository
Hongjie, Hu

× Hongjie, Hu

en Hongjie, Hu

Search repository
Qiaowei, Zhang

× Qiaowei, Zhang

en Qiaowei, Zhang

Search repository
Qingqing, Chen

× Qingqing, Chen

en Qingqing, Chen

Search repository
Yutaro, Iwamoto

× Yutaro, Iwamoto

en Yutaro, Iwamoto

Search repository
Xianhua, Han

× Xianhua, Han

en Xianhua, Han

Search repository
Yen-Wei, Chen

× Yen-Wei, Chen

en Yen-Wei, Chen

Search repository
論文抄録
内容記述タイプ Other
内容記述 Liver cancer is one of the leading causes of death world-wide. Computer-aided diagnosis plays an important role in liver lesion diagnosis (classification). Recently, several deep learning-based computer-aided diagnosis systems have been proposed for classification of liver lesions and their effectiveness have been demonstrated. The main challenge in deep learningbased medical image classification is the lack of annotated training samples. In this paper, we demonstrated that fine-tuning can significantly improve the liver lesion classification accuracy especially for the small training samples. We used the residual convolutional neural network (ResNet), which is the state-of-the-art network, as our baseline network for focal liver lesion classification on multi-phase CT images. The fine-tuning significantly improved the classification accuracy from 83.7% to 91.2%. The classification accuracy (91.2%) is higher than the accuracy of the state-of-the-art methods.
論文抄録(英)
内容記述タイプ Other
内容記述 Liver cancer is one of the leading causes of death world-wide. Computer-aided diagnosis plays an important role in liver lesion diagnosis (classification). Recently, several deep learning-based computer-aided diagnosis systems have been proposed for classification of liver lesions and their effectiveness have been demonstrated. The main challenge in deep learningbased medical image classification is the lack of annotated training samples. In this paper, we demonstrated that fine-tuning can significantly improve the liver lesion classification accuracy especially for the small training samples. We used the residual convolutional neural network (ResNet), which is the state-of-the-art network, as our baseline network for focal liver lesion classification on multi-phase CT images. The fine-tuning significantly improved the classification accuracy from 83.7% to 91.2%. The classification accuracy (91.2%) is higher than the accuracy of the state-of-the-art methods.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11131797
書誌情報 研究報告コンピュータビジョンとイメージメディア(CVIM)

巻 2018-CVIM-213, 号 23, p. 1-2, 発行日 2018-09-13
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8701
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 00:43:12.706074
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3