ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 音楽情報科学(MUS)
  3. 2018
  4. 2018-MUS-119

Evaluation of DNN-based Speech Recognition for English Spoken by Japanese Learners

https://ipsj.ixsq.nii.ac.jp/records/189893
https://ipsj.ixsq.nii.ac.jp/records/189893
85d36b30-1eaa-4895-a8ae-da49357cd4e6
名前 / ファイル ライセンス アクション
IPSJ-MUS18119026.pdf IPSJ-MUS18119026.pdf (1.3 MB)
Copyright (c) 2018 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2018-06-09
タイトル
タイトル Evaluation of DNN-based Speech Recognition for English Spoken by Japanese Learners
タイトル
言語 en
タイトル Evaluation of DNN-based Speech Recognition for English Spoken by Japanese Learners
言語
言語 eng
キーワード
主題Scheme Other
主題 ポスターセッション
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Graduate School of Engineering, Tohoku University
著者所属
Graduate School of Engineering, Tohoku University
著者所属
Graduate School of Engineering, Tohoku University
著者所属
Graduate School of Engineering, Tohoku University
著者所属(英)
en
Graduate School of Engineering, Tohoku University
著者所属(英)
en
Graduate School of Engineering, Tohoku University
著者所属(英)
en
Graduate School of Engineering, Tohoku University
著者所属(英)
en
Graduate School of Engineering, Tohoku University
著者名 Jiang, Fu

× Jiang, Fu

Jiang, Fu

Search repository
Yuya, Chiba

× Yuya, Chiba

Yuya, Chiba

Search repository
Takashi, Nose

× Takashi, Nose

Takashi, Nose

Search repository
Akinori, Ito

× Akinori, Ito

Akinori, Ito

Search repository
著者名(英) Jiang, Fu

× Jiang, Fu

en Jiang, Fu

Search repository
Yuya, Chiba

× Yuya, Chiba

en Yuya, Chiba

Search repository
Takashi, Nose

× Takashi, Nose

en Takashi, Nose

Search repository
Akinori, Ito

× Akinori, Ito

en Akinori, Ito

Search repository
論文抄録
内容記述タイプ Other
内容記述 Regarding the assistance of computer-assisted language learning (CALL) systems to make foreign language learning easier, it is necessary to recognize the utterances of the learner with high accuracy. The quality of CALL systems mainly depends on the accuracy of automatic speech recognition (ASR). However, since pronunciation of non-native speakers is greatly different from that of native speakers, existing ASR system cannot well recognize speech accurately. To solve this problem, this research projects an acoustic model based on deep neural networks (DNN), which is trained by using ERJ (English Read by Japanese) database collected from 202 Japanese learners. Compared with traditional ASR systems, this new system significantly promotes speech recognition rate.
論文抄録(英)
内容記述タイプ Other
内容記述 Regarding the assistance of computer-assisted language learning (CALL) systems to make foreign language learning easier, it is necessary to recognize the utterances of the learner with high accuracy. The quality of CALL systems mainly depends on the accuracy of automatic speech recognition (ASR). However, since pronunciation of non-native speakers is greatly different from that of native speakers, existing ASR system cannot well recognize speech accurately. To solve this problem, this research projects an acoustic model based on deep neural networks (DNN), which is trained by using ERJ (English Read by Japanese) database collected from 202 Japanese learners. Compared with traditional ASR systems, this new system significantly promotes speech recognition rate.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10438388
書誌情報 研究報告音楽情報科学(MUS)

巻 2018-MUS-119, 号 26, p. 1-5, 発行日 2018-06-09
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8752
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 01:26:05.069560
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3