{"updated":"2025-01-20T02:37:24.090394+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00186407","sets":["1164:1579:9341:9429"]},"path":["9429"],"owner":"11","recid":"186407","title":["マルチFPGA上でのGoogLeNet実装"],"pubdate":{"attribute_name":"公開日","attribute_value":"2018-02-28"},"_buckets":{"deposit":"b166f88c-fc57-4e43-ab42-03f5ee8f0c19"},"_deposit":{"id":"186407","pid":{"type":"depid","value":"186407","revision_id":0},"owners":[11],"status":"published","created_by":11},"item_title":"マルチFPGA上でのGoogLeNet実装","author_link":["417931","417936","417932","417935","417933","417934"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"マルチFPGA上でのGoogLeNet実装"},{"subitem_title":"Implementation GoogLeNet on multi FPGAs","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"機械学習・アルゴリズム","subitem_subject_scheme":"Other"}]},"item_type_id":"4","publish_date":"2018-02-28","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"慶應義塾大学大学院理工学研究科"},{"subitem_text_value":"慶應義塾大学大学院理工学研究科"},{"subitem_text_value":"慶應義塾大学大学院理工学研究科"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Science and Technology, Keio University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Science and Technology, Keio University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Science and Technology, Keio University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/186407/files/IPSJ-ARC18230033.pdf","label":"IPSJ-ARC18230033.pdf"},"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-ARC18230033.pdf","filesize":[{"value":"2.2 MB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"0","billingrole":"16"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_login","version_id":"4b14d32d-aee6-4fef-ac57-f433ca67571f","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2018 by the Institute of Electronics, Information and Communication Engineers This SIG report is only available to those in membership of the SIG."}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"飯塚, 健介"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"武者, 千嵯"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"天野, 英晴"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Kensuke, Iizuka","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Kazusa, Musha","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"hideharu, Amano","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10096105","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8574","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"高精度な画像認識や,物体検出を実現する畳み込みニューラルネットワーク (CNN : Convolutional Neural Network) は一躍注目されている.CNN は認識精度向上を目指し様々なモデルが提案されているが,計算量が増加する傾向にあり,より効率的な演算処理が求められている.しかし,汎用プロセッサではその要求を満たすことが困難なため,専用のアクセラレータの需要が高まっている.日本でも国立研究開発法人新エネルギー ・ 産業技術開発機構 (NEDO) が複数の FPGA,GPU,メモリなどの異種ノードを接続した大規模人工知能計算基盤 Flow-in-Clowd (FiC) を開発している.FPGA ノードは多数の高速リンクが接続され,FiC の高速通信のスイッチングを担う.FiC システムにおいて主演算を行うのは GPU ノードであるが,FPGA ノードもスイッチを実装した上で余った計算資源を利用して AI エンジンとしての役割を担うことができる.本研究ではマルチ FPGA システムに CNN モデルの 1 つであるGoogLeNet を実装し,評価することで GoogLeNet の高速化を図るとともに,マルチ FPGA システムの深層学習アクセラレータとしての活用ができるかを検討する.GoogLeNet が持つネットワークモデル特有の計算並列性,畳込み演算の計算並列性を利用したマルチFPGAシステムへの実装を行った結果,シミュレーション上で CPU の約 9.1 倍の高速化を達成した.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"6","bibliographic_titles":[{"bibliographic_title":"研究報告システム・アーキテクチャ(ARC)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2018-02-28","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"33","bibliographicVolumeNumber":"2018-ARC-230"}]},"relation_version_is_last":true,"weko_creator_id":"11"},"created":"2025-01-19T00:53:22.019249+00:00","id":186407,"links":{}}