ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. ハイパフォーマンスコンピューティング(HPC)
  3. 2018
  4. 2018-HPC-163

Pushing the Limits for 2D Convolution Computation On CUDA-enabled GPUs

https://ipsj.ixsq.nii.ac.jp/records/186051
https://ipsj.ixsq.nii.ac.jp/records/186051
7393b780-7a7a-4ffb-b95e-bef159ddfa5a
名前 / ファイル ライセンス アクション
IPSJ-HPC18163022.pdf IPSJ-HPC18163022.pdf (4.1 MB)
Copyright (c) 2018 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2018-02-21
タイトル
タイトル Pushing the Limits for 2D Convolution Computation On CUDA-enabled GPUs
タイトル
言語 en
タイトル Pushing the Limits for 2D Convolution Computation On CUDA-enabled GPUs
言語
言語 eng
キーワード
主題Scheme Other
主題 GPU
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
Tokyo Institute of Technology/AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
著者所属
National Institute of Advanced Industrial Science and Technology
著者所属
AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
著者所属
Tokyo Institute of Technology/AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
著者所属(英)
en
Tokyo Institute of Technology / AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
著者所属(英)
en
National Institute of Advanced Industrial Science and Technology
著者所属(英)
en
AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
著者所属(英)
en
Tokyo Institute of Technology / AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology
著者名 Peng, Chen

× Peng, Chen

Peng, Chen

Search repository
Mohamed, Wahib

× Mohamed, Wahib

Mohamed, Wahib

Search repository
Shinichiro, Takizawa

× Shinichiro, Takizawa

Shinichiro, Takizawa

Search repository
Satoshi, Matsuoka

× Satoshi, Matsuoka

Satoshi, Matsuoka

Search repository
著者名(英) Peng, Chen

× Peng, Chen

en Peng, Chen

Search repository
Mohamed, Wahib

× Mohamed, Wahib

en Mohamed, Wahib

Search repository
Shinichiro, Takizawa

× Shinichiro, Takizawa

en Shinichiro, Takizawa

Search repository
Satoshi, Matsuoka

× Satoshi, Matsuoka

en Satoshi, Matsuoka

Search repository
論文抄録
内容記述タイプ Other
内容記述 The 2D convolution operator is the computational bottleneck in a variety of image processing and machine learning applications. We propose an algorithm to compute convolution by employing register files to cache image data (known as register cache), rather than using the user-managed scratch-pad memory. We take advantage of CUDA's warp shuffle functions to accelerate the intra-warp communication of partial results. Unlike the GEMM-based, FFT-based or Winograd method, our algorithm executes the convolution computation without using any GPU memory as a workspace, and is general to all filter shapes. Our algorithm performs better than state-of-the-art 2D convolution implementations. Using a single TitanXp GPU, it is in average 4.7x faster than NPP (Nvidia Performance Primitives), and 1.8x faster than the highly-optimized ArrayFire library.
論文抄録(英)
内容記述タイプ Other
内容記述 The 2D convolution operator is the computational bottleneck in a variety of image processing and machine learning applications. We propose an algorithm to compute convolution by employing register files to cache image data (known as register cache), rather than using the user-managed scratch-pad memory. We take advantage of CUDA's warp shuffle functions to accelerate the intra-warp communication of partial results. Unlike the GEMM-based, FFT-based or Winograd method, our algorithm executes the convolution computation without using any GPU memory as a workspace, and is general to all filter shapes. Our algorithm performs better than state-of-the-art 2D convolution implementations. Using a single TitanXp GPU, it is in average 4.7x faster than NPP (Nvidia Performance Primitives), and 1.8x faster than the highly-optimized ArrayFire library.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10463942
書誌情報 研究報告ハイパフォーマンスコンピューティング(HPC)

巻 2018-HPC-163, 号 22, p. 1-9, 発行日 2018-02-21
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8841
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 02:44:23.789721
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3