@techreport{oai:ipsj.ixsq.nii.ac.jp:00184899,
 author = {中野, 智輝 and 横川, 三津夫 and 深谷, 猛 and 山本, 有作 and Tomoki, Nakano and Mitsuo, Yokokawa and Takeshi, Fukaya and Yusaku, Yamamoto},
 issue = {19},
 month = {Dec},
 note = {近年,導電性高分子がウェアラブルデバイスとして注目されている.安定した導電性を持つ素材を設計するためには,導電性高分子の電子状態を求めることが重要である.この支配方程式は,時間依存シュレディンガー方程式であるが,ある離散化により連立一次方程式を解く問題に帰着される.本稿では,この方程式のモデル問題として 2 次元ポアソン方程式を取り上げ,one-way dissection オーダリングによる正定値対称疎行列を係数行列にもつ連立一次方程式の並列直接解法に対して,いくつかの疎行列格納方式を用いた場合の性能評価結果について述べる.また,新しいスカイライン格納方式を提案し,その有効性を確認した., In recent years, conductive polymers have attracted a lot of attention as materals of wearable devices. It is required to make clear electronic states of the conductive polymers in order to design materials which have electrically stable conductivities. The electronic states are represented by the time-dependent Schrodinger equation and a linear system of equations is derived from its discretization. In this paper, we considered the two-dimensional Poisson's equation as a model problem. We applied two sparse matrix storage formats, or CCS format and a new skyline-type format, to hold the coefficient matrix of a linear system of equations which is obtained by discretization of the Poisson's equation with one-way dissection ordering, where the coefficient matrix is sparse, symmetric, and positive definite. The performance of the formats was evaluated and the new formant was found to be efficeint.},
 title = {One-way dissectionオーダリングによる連立一次方程式の直接解法の並列化},
 year = {2017}
}