ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(ジャーナル)
  2. Vol.58
  3. No.10

Hierarchical Back-off Modeling of Hiero Grammar based on Non-parametric Bayesian Model

https://ipsj.ixsq.nii.ac.jp/records/183817
https://ipsj.ixsq.nii.ac.jp/records/183817
b836164d-bcc8-48f8-a853-1bcf3487d49f
名前 / ファイル ライセンス アクション
IPSJ-JNL5810018.pdf IPSJ-JNL5810018.pdf (1.0 MB)
Copyright (c) 2017 by the Information Processing Society of Japan
オープンアクセス
Item type Journal(1)
公開日 2017-10-15
タイトル
タイトル Hierarchical Back-off Modeling of Hiero Grammar based on Non-parametric Bayesian Model
タイトル
言語 en
タイトル Hierarchical Back-off Modeling of Hiero Grammar based on Non-parametric Bayesian Model
言語
言語 eng
キーワード
主題Scheme Other
主題 [一般論文] statistical machine translation, hierarchical phrase-based SMT, phrase alignments, synchronous context free grammar, Hiero grammar, non-parametric Bayesian statistics, unsupervised grammar induction
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
NTT Communication Science Laboratories
著者所属
Google Inc.
著者所属
Tokyo Institute of Technology
著者所属
Tokyo Institute of Technology
著者所属
National Institute of Information and Communication Technology
著者所属(英)
en
NTT Communication Science Laboratories
著者所属(英)
en
Google Inc.
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
Tokyo Institute of Technology
著者所属(英)
en
National Institute of Information and Communication Technology
著者名 Hidetaka, Kamigaito

× Hidetaka, Kamigaito

Hidetaka, Kamigaito

Search repository
Taro, Watanabe

× Taro, Watanabe

Taro, Watanabe

Search repository
Hiroya, Takamura

× Hiroya, Takamura

Hiroya, Takamura

Search repository
Manabu, Okumura

× Manabu, Okumura

Manabu, Okumura

Search repository
Eiichiro, Sumita

× Eiichiro, Sumita

Eiichiro, Sumita

Search repository
著者名(英) Hidetaka, Kamigaito

× Hidetaka, Kamigaito

en Hidetaka, Kamigaito

Search repository
Taro, Watanabe

× Taro, Watanabe

en Taro, Watanabe

Search repository
Hiroya, Takamura

× Hiroya, Takamura

en Hiroya, Takamura

Search repository
Manabu, Okumura

× Manabu, Okumura

en Manabu, Okumura

Search repository
Eiichiro, Sumita

× Eiichiro, Sumita

en Eiichiro, Sumita

Search repository
論文抄録
内容記述タイプ Other
内容記述 In hierarchical phrase-based machine translation, a rule table is automatically learned by heuristically extracting synchronous rules from a parallel corpus. As a result, spuriously many rules are extracted which may be composed of various incorrect rules. The larger rule table incurs more disk and memory resources, and sometimes results in lower translation quality. To resolve the problems, we propose a hierarchical back-off model for Hiero grammar, an instance of a synchronous context free grammar (SCFG), on the basis of the hierarchical Pitman-Yor process. The model can generate compact rules and phrase pairs without resorting to any heuristics, because longer rules and phrase pairs are automatically backing off to smaller phrases under SCFG. Inference is efficiently carried out using two-step synchronous parsing of Xiao et al. combined with slice sampling. In our experiments, the proposed model achieved a higher or at least comparable translation quality against a previous Bayesian model on various language pairs: German/French/Spanish/Japanese-English. When compared against heuristic models, our model achieved comparable translation quality on a full size German-English language pair in Europarl v7 corpus with a significantly smaller grammar size; less than 10% of that for heuristic models.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.25(2017) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.25.912
------------------------------
論文抄録(英)
内容記述タイプ Other
内容記述 In hierarchical phrase-based machine translation, a rule table is automatically learned by heuristically extracting synchronous rules from a parallel corpus. As a result, spuriously many rules are extracted which may be composed of various incorrect rules. The larger rule table incurs more disk and memory resources, and sometimes results in lower translation quality. To resolve the problems, we propose a hierarchical back-off model for Hiero grammar, an instance of a synchronous context free grammar (SCFG), on the basis of the hierarchical Pitman-Yor process. The model can generate compact rules and phrase pairs without resorting to any heuristics, because longer rules and phrase pairs are automatically backing off to smaller phrases under SCFG. Inference is efficiently carried out using two-step synchronous parsing of Xiao et al. combined with slice sampling. In our experiments, the proposed model achieved a higher or at least comparable translation quality against a previous Bayesian model on various language pairs: German/French/Spanish/Japanese-English. When compared against heuristic models, our model achieved comparable translation quality on a full size German-English language pair in Europarl v7 corpus with a significantly smaller grammar size; less than 10% of that for heuristic models.
------------------------------
This is a preprint of an article intended for publication Journal of
Information Processing(JIP). This preprint should not be cited. This
article should be cited as: Journal of Information Processing Vol.25(2017) (online)
DOI http://dx.doi.org/10.2197/ipsjjip.25.912
------------------------------
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN00116647
書誌情報 情報処理学会論文誌

巻 58, 号 10, 発行日 2017-10-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7764
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 03:31:43.440884
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3