{"metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00178810","sets":["1164:4179:9105:9161"]},"path":["9161"],"owner":"11","recid":"178810","title":["Graph Neural Networkを用いた未知エンティティの表現獲得について"],"pubdate":{"attribute_name":"公開日","attribute_value":"2017-05-08"},"_buckets":{"deposit":"a7c9245b-68d3-4845-afb5-4ae44c0ebb24"},"_deposit":{"id":"178810","pid":{"type":"depid","value":"178810","revision_id":0},"owners":[11],"status":"published","created_by":11},"item_title":"Graph Neural Networkを用いた未知エンティティの表現獲得について","author_link":["384014","384017","384013","384016","384012","384011","384015","384018"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Graph Neural Networkを用いた未知エンティティの表現獲得について"}]},"item_type_id":"4","publish_date":"2017-05-08","item_4_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"奈良先端科学技術大学院大学"},{"subitem_text_value":"Recruit Institute of Technology"},{"subitem_text_value":"奈良先端科学技術大学院大学"},{"subitem_text_value":"奈良先端科学技術大学院大学"}]},"item_4_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Nara Institute of Science and Technology","subitem_text_language":"en"},{"subitem_text_value":"Recruit Institute of Technology","subitem_text_language":"en"},{"subitem_text_value":"Nara Institute of Science and Technology","subitem_text_language":"en"},{"subitem_text_value":"Nara Institute of Science and Technology","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/178810/files/IPSJ-NL17231020.pdf","label":"IPSJ-NL17231020.pdf"},"date":[{"dateType":"Available","dateValue":"2019-05-08"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-NL17231020.pdf","filesize":[{"value":"762.0 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"23"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"8fa58499-3e1e-4cb7-a433-a11dda9191bf","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2017 by the Information Processing Society of Japan"}]},"item_4_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"濱口, 拓男"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"大岩, 秀和"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"新保, 仁"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"松本, 裕治"}],"nameIdentifiers":[{}]}]},"item_4_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Takuo, Hamaguchi","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Hidekazu, Oiwa","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Masashi, Shimbo","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Yuji, Matsumoto","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_4_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN10115061","subitem_source_identifier_type":"NCID"}]},"item_4_textarea_12":{"attribute_name":"Notice","attribute_value_mlt":[{"subitem_textarea_value":"SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc."}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_18gh","resourcetype":"technical report"}]},"item_4_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"2188-8779","subitem_source_identifier_type":"ISSN"}]},"item_4_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"知識ベース補完は知識ベース内で欠落している情報を推定するタスクである.本論文では知識ベース補完における未知 entity 問題を扱う.未知 entity 問題とは,訓練データに含まれない entity が予測時に与えられた場合,その entity に関する知識をどのようにして獲得するのかという問題である.埋め込みに基づいた知識ベース補完の既存手法は,予測時に与えられる entity はすべて訓練データ中に出現している仮定を置いているため,未知 entity の表現をどう獲得するかは明らかではなかった.今回我々は再度モデルを学習するということなく,この未知 entity 問題を解決する.具体的には,未知 entity に関する補助的な知識を用いることで知識グラフ上の Graph neural network を構築し,既存の表現から知識を転用することで未知 entity に関する表現を得る.我々は未知 entity の実験において提案する手法の効果を示した.また WordNet データを用いた標準的な知識ベース補完の設定の下でも,先行研究に比較して良い精度を示した.","subitem_description_type":"Other"}]},"item_4_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"8","bibliographic_titles":[{"bibliographic_title":"研究報告自然言語処理(NL)"}],"bibliographicPageStart":"1","bibliographicIssueDates":{"bibliographicIssueDate":"2017-05-08","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"20","bibliographicVolumeNumber":"2017-NL-231"}]},"relation_version_is_last":true,"weko_creator_id":"11"},"id":178810,"updated":"2025-01-20T04:59:52.422852+00:00","links":{},"created":"2025-01-19T00:48:06.503187+00:00"}