{"updated":"2025-01-20T05:54:32.220993+00:00","metadata":{"_oai":{"id":"oai:ipsj.ixsq.nii.ac.jp:00176338","sets":["934:989:8398:8952"]},"path":["8952"],"owner":"11","recid":"176338","title":["ギブスサンプラに基づくアミノ酸配列モチーフの高精度抽出法"],"pubdate":{"attribute_name":"公開日","attribute_value":"2016-12-14"},"_buckets":{"deposit":"b7155fc0-7b85-4fc4-8225-7c8c7ec49a17"},"_deposit":{"id":"176338","pid":{"type":"depid","value":"176338","revision_id":0},"owners":[11],"status":"published","created_by":11},"item_title":"ギブスサンプラに基づくアミノ酸配列モチーフの高精度抽出法","author_link":["370866","370860","370858","370863","370862","370861","370864","370859","370857","370865"],"item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"ギブスサンプラに基づくアミノ酸配列モチーフの高精度抽出法"},{"subitem_title":"Method for High-precision Motif Extraction Based on Gibbs Sampler in Amino Acid Sequences","subitem_title_language":"en"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"[オリジナル論文] ギブスサンプリング,アミノ酸配列,モチーフ検索,多重整列化","subitem_subject_scheme":"Other"}]},"item_type_id":"3","publish_date":"2016-12-14","item_3_text_3":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"広島市立大学大学院情報科学研究科"},{"subitem_text_value":"広島市立大学大学院情報科学研究科"},{"subitem_text_value":"広島市立大学大学院情報科学研究科"},{"subitem_text_value":"広島市立大学大学院情報科学研究科"},{"subitem_text_value":"広島市立大学大学院情報科学研究科"}]},"item_3_text_4":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University","subitem_text_language":"en"},{"subitem_text_value":"Graduate School of Information Sciences, Hiroshima City University","subitem_text_language":"en"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_publisher":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"情報処理学会","subitem_publisher_language":"ja"}]},"publish_status":"0","weko_shared_id":-1,"item_file_price":{"attribute_name":"Billing file","attribute_type":"file","attribute_value_mlt":[{"url":{"url":"https://ipsj.ixsq.nii.ac.jp/record/176338/files/IPSJ-TOM0903007.pdf","label":"IPSJ-TOM0903007.pdf"},"date":[{"dateType":"Available","dateValue":"2018-12-14"}],"format":"application/pdf","billing":["billing_file"],"filename":"IPSJ-TOM0903007.pdf","filesize":[{"value":"899.5 kB"}],"mimetype":"application/pdf","priceinfo":[{"tax":["include_tax"],"price":"660","billingrole":"5"},{"tax":["include_tax"],"price":"330","billingrole":"6"},{"tax":["include_tax"],"price":"0","billingrole":"17"},{"tax":["include_tax"],"price":"0","billingrole":"44"}],"accessrole":"open_date","version_id":"d3119c49-a9c9-4445-a37e-81766e1f2d30","displaytype":"detail","licensetype":"license_note","license_note":"Copyright (c) 2016 by the Information Processing Society of Japan"}]},"item_3_creator_5":{"attribute_name":"著者名","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"高橋, 誉文"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"北上, 始"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"福本, 翔平"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"森, 康真"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"田村, 慶一"}],"nameIdentifiers":[{}]}]},"item_3_creator_6":{"attribute_name":"著者名(英)","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Yoshifumi, Takahashi","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Hajime, Kitakami","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Syouhei, Fukumoto","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Yasuma, Mori","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Keiichi, Tamura","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_3_source_id_9":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11464803","subitem_source_identifier_type":"NCID"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourceuri":"http://purl.org/coar/resource_type/c_6501","resourcetype":"journal article"}]},"item_3_source_id_11":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1882-7780","subitem_source_identifier_type":"ISSN"}]},"item_3_description_7":{"attribute_name":"論文抄録","attribute_value_mlt":[{"subitem_description":"アミノ酸配列データベースから類似部分配列を抽出することとして知られている従来のギブスサンプリング法の抽出精度を向上させるために,多重整列化に基づく新しい方法を提案する.従来のギブスサンプリング法の抽出精度は初期値に大きく左右される.この点に着目し,提案手法では,できるだけ良い初期値を計算するため,配列データセットに対して多重整列化を行い,ある幅のウインドウを多重整列上にスライドさせ,p値が最小となるウインドウ領域(類似部分配列)を初期値として選択する.多重整列化によって挿入されるギャップについては,ランダムに文字をあてはめる場合とすべての文字が等確率に現れる場合を比較する.また,ギブスサンプリングで利用される擬似度数に進化的な知識を導入し,抽出される類似部分配列としての配列モチーフ(進化的に保存される配列パターン)の抽出精度を向上させている.","subitem_description_type":"Other"}]},"item_3_description_8":{"attribute_name":"論文抄録(英)","attribute_value_mlt":[{"subitem_description":"In order to improve the extraction accuracy of the existing, well-known Gibbs sampling method for extracting similar subsequences from amino acid sequence databases, we propose a new extraction method based on multiple sequence alignment in the sequence dataset. The extraction accuracy of the existing Gibbs sampling method is highly dependent on the initial solution selected randomly. In focusing on this point, the proposed method performs multiple sequence alignment for the sequence dataset to calculate the best possible initial solution. After that, we slide the aligned sequences on a window of a certain width and select the window region including the set of subsequences, where p-value is minimized, as the initial solution. In order to confirm the effectiveness of the proposed method, we carried out comparative experiments with random distribution and equal distribution. Moreover, we improve the accuracy of the existing Gibbs sampling method by using an amino acid substitution matrix as the knowledge of molecular evolution for pseudocount.","subitem_description_type":"Other"}]},"item_3_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicPageEnd":"43","bibliographic_titles":[{"bibliographic_title":"情報処理学会論文誌数理モデル化と応用(TOM)"}],"bibliographicPageStart":"32","bibliographicIssueDates":{"bibliographicIssueDate":"2016-12-14","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"3","bibliographicVolumeNumber":"9"}]},"relation_version_is_last":true,"weko_creator_id":"11"},"created":"2025-01-19T00:45:59.535822+00:00","id":176338,"links":{}}