@inproceedings{oai:ipsj.ixsq.nii.ac.jp:00175876, author = {伊藤, 大貴 and 永井, 達也 and 高野, 泰洋 and 神薗, 雅紀 and 毛利, 公美 and 白石, 善明 and 星澤, 裕二 and 森井, 昌克 and Daiki, Ito and Tatsuya, Nagai and Yasuhiro, Takano and Masaki, Kamizono and Masami, Mohri and Yoshiaki, Shiraishi and Yuji, Hoshizawa and Masakatu, Morii}, book = {コンピュータセキュリティシンポジウム2016論文集}, issue = {2}, month = {Oct}, note = {Web サイトの閲覧によるマルウェア感染が多発しており,悪性 Web サイトの脅威が深刻化している.攻撃者は頻繁に Web サイトを更新し,未知の悪性 Web サイトを新たに生成しうる.従って,被害を未然に防ぐことは容易ではない.本研究では悪性 Web サイトのリンク構造には互いに類似性があると想定し,リンク構造を用いた悪性 Web サイト検知法について検討する.提案手法では,ニューラルネットワークを用いた教師付き学習によって悪性 Web サイトを検知する.Web クローラーを用いて収集した実際のリンク構造データにより,提案手法の有効性を確認した., Threat of malicious websites has become a serious security problem since browsing the malicious websites causes malware infection epidemically. Attackers frequently updates their website and can generate unknown malicious websites newly. It is, therefore, difficult to prevent from the infection. By assuming that there exists affinity between the link structures of malicious websites, this paper proposes a new technique to detect malicious websites using the link structure. The proposed method can detect unknown malicious websites by a supervised learning using the neural network. The experiment shown in this paper verifies the effectiveness of the proposed method for real link structure data obtained by our web crawling in July 2016.}, pages = {1229--1233}, publisher = {情報処理学会}, title = {リンク構造を用いた悪性Webサイトの検知法}, volume = {2016}, year = {2016} }